A rational projective plane ([Formula: see text]) is a simply connected, smooth, closed manifold [Formula: see text] such that [Formula: see text]. An open problem is to classify the dimensions at which such a manifold exists. The Barge–Sullivan rational surgery realization theorem provides necessary and sufficient conditions that include the Hattori–Stong integrality conditions on the Pontryagin numbers. In this paper, we simplify these conditions and combine them with the signature equation to give a single quadratic residue equation that determines whether a given dimension supports a [Formula: see text]. We then confirm the existence of a [Formula: see text] in two new dimensions and prove several non-existence results using factorization of the numerators of the divided Bernoulli numbers. We also resolve the existence question in the Spin case, and we discuss existence results for the more general class of rational projective spaces.
more »
« less
Tri-plane diagrams for simple surfaces in S4
Meier and Zupan proved that an orientable surface [Formula: see text] in [Formula: see text] admits a tri-plane diagram with zero crossings if and only if [Formula: see text] is unknotted, so that the crossing number of [Formula: see text] is zero. We determine the minimal crossing numbers of nonorientable unknotted surfaces in [Formula: see text], proving that [Formula: see text], where [Formula: see text] denotes the connected sum of [Formula: see text] unknotted projective planes with normal Euler number [Formula: see text] and [Formula: see text] unknotted projective planes with normal Euler number [Formula: see text]. In addition, we convert Yoshikawa’s table of knotted surface ch-diagrams to tri-plane diagrams, finding the minimal bridge number for each surface in the table and providing upper bounds for the crossing numbers.
more »
« less
- Award ID(s):
- 2005518
- PAR ID:
- 10428663
- Date Published:
- Journal Name:
- Journal of Knot Theory and Its Ramifications
- ISSN:
- 0218-2165
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We propose an Euler transformation that transforms a given [Formula: see text]-dimensional cell complex [Formula: see text] for [Formula: see text] into a new [Formula: see text]-complex [Formula: see text] in which every vertex is part of the same even number of edges. Hence every vertex in the graph [Formula: see text] that is the [Formula: see text]-skeleton of [Formula: see text] has an even degree, which makes [Formula: see text] Eulerian, i.e., it is guaranteed to contain an Eulerian tour. Meshes whose edges admit Eulerian tours are crucial in coverage problems arising in several applications including 3D printing and robotics. For [Formula: see text]-complexes in [Formula: see text] ([Formula: see text]) under mild assumptions (that no two adjacent edges of a [Formula: see text]-cell in [Formula: see text] are boundary edges), we show that the Euler transformed [Formula: see text]-complex [Formula: see text] has a geometric realization in [Formula: see text], and that each vertex in its [Formula: see text]-skeleton has degree [Formula: see text]. We bound the numbers of vertices, edges, and [Formula: see text]-cells in [Formula: see text] as small scalar multiples of the corresponding numbers in [Formula: see text]. We prove corresponding results for [Formula: see text]-complexes in [Formula: see text] under an additional assumption that the degree of a vertex in each [Formula: see text]-cell containing it is [Formula: see text]. In this setting, every vertex in [Formula: see text] is shown to have a degree of [Formula: see text]. We also present bounds on parameters measuring geometric quality (aspect ratios, minimum edge length, and maximum angle of cells) of [Formula: see text] in terms of the corresponding parameters of [Formula: see text] for [Formula: see text]. Finally, we illustrate a direct application of the proposed Euler transformation in additive manufacturing.more » « less
-
Fix a weakly minimal (i.e. superstable [Formula: see text]-rank [Formula: see text]) structure [Formula: see text]. Let [Formula: see text] be an expansion by constants for an elementary substructure, and let [Formula: see text] be an arbitrary subset of the universe [Formula: see text]. We show that all formulas in the expansion [Formula: see text] are equivalent to bounded formulas, and so [Formula: see text] is stable (or NIP) if and only if the [Formula: see text]-induced structure [Formula: see text] on [Formula: see text] is stable (or NIP). We then restrict to the case that [Formula: see text] is a pure abelian group with a weakly minimal theory, and [Formula: see text] is mutually algebraic (equivalently, weakly minimal with trivial forking). This setting encompasses most of the recent research on stable expansions of [Formula: see text]. Using various characterizations of mutual algebraicity, we give new examples of stable structures of the form [Formula: see text]. Most notably, we show that if [Formula: see text] is a weakly minimal additive subgroup of the algebraic numbers, [Formula: see text] is enumerated by a homogeneous linear recurrence relation with algebraic coefficients, and no repeated root of the characteristic polynomial of [Formula: see text] is a root of unity, then [Formula: see text] is superstable for any [Formula: see text].more » « less
-
The non-orientable 4-genus of a knot [Formula: see text] in [Formula: see text] is defined to be the minimum first Betti number of a non-orientable surface [Formula: see text] smoothly embedded in [Formula: see text] so that [Formula: see text] bounds [Formula: see text]. We will survey the tools used to compute the non-orientable 4-genus, and use various techniques to calculate this invariant for non-alternating 11 crossing knots. We will also view obstructions to a knot bounding a Möbius band given by the double branched cover of [Formula: see text] branched over [Formula: see text].more » « less
-
null (Ed.)Let [Formula: see text] be a group acting properly and by isometries on a metric space [Formula: see text]; it follows that the quotient or orbit space [Formula: see text] is also a metric space. We study the Vietoris–Rips and Čech complexes of [Formula: see text]. Whereas (co)homology theories for metric spaces let the scale parameter of a Vietoris–Rips or Čech complex go to zero, and whereas geometric group theory requires the scale parameter to be sufficiently large, we instead consider intermediate scale parameters (neither tending to zero nor to infinity). As a particular case, we study the Vietoris–Rips and Čech thickenings of projective spaces at the first scale parameter where the homotopy type changes.more » « less
An official website of the United States government

