skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rotation in Event Horizon Telescope Movies
Abstract The Event Horizon Telescope (EHT) has produced images of M87* and Sagittarius A*, and will soon produce time sequences of images, or movies. In anticipation of this, we describe a technique to measure the rotation rate, or pattern speed Ωp, from movies using an autocorrelation technique. We validate the technique on Gaussian random field models with a known rotation rate and apply it to a library of synthetic images of Sgr A* based on general relativistic magnetohydrodynamics simulations. We predict that EHT movies will have Ωp≈ 1° perGMc−3, which is of order 15% of the Keplerian orbital frequency in the emitting region. We can plausibly attribute the slow rotation seen in our models to the pattern speed of inward-propagating spiral shocks. We also find that Ωpdepends strongly on inclination. Application of this technique will enable us to compare future EHT movies with the clockwise rotation of Sgr A* seen in near-infrared flares by GRAVITY. Pattern speed analysis of future EHT observations of M87* and Sgr A* may also provide novel constraints on black hole inclination and spin, as well as an independent measurement of black hole mass.  more » « less
Award ID(s):
1716327 2034306
PAR ID:
10428705
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
951
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 46
Size(s):
Article No. 46
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In 1977, Blandford and Znajek showed that the electromagnetic field surrounding a rotating black hole can harvest its spin energy and use it to power a collimated astrophysical jet, such as the one launched from the center of the elliptical galaxy M87. Today, interferometric observations with the Event Horizon Telescope (EHT) are delivering high-resolution, event-horizon-scale, polarimetric images of the supermassive black hole M87* at the jet launching point. These polarimetric images offer an unprecedented window into the electromagnetic field structure around a black hole. In this paper, we show that a simple polarimetric observable—the phase ∠β2of the second azimuthal Fourier mode of the linear polarization in a near-horizon image—depends on the sign of the electromagnetic energy flux and therefore provides a direct probe of black hole energy extraction. In Boyer–Lindquist coordinates, the Poynting flux for axisymmetric electromagnetic fields is proportional to the productBϕBr. The phase ∠β2likewise depends on the ratioBϕ/Br, thereby enabling an observer to determine the direction of electromagnetic energy flow in the near-horizon environment experimentally. Data from the 2017 EHT observations of M87* are consistent with electromagnetic energy outflow. Currently envisioned multifrequency observations of M87* will achieve higher dynamic range and angular resolution, and hence deliver measurements of ∠β2closer to the event horizon as well as better constraints on Faraday rotation. Such observations will enable a definitive test for energy extraction from the black hole M87*. 
    more » « less
  2. Abstract We propose an analytic dual-cone accretion model for horizon-scale images of the cores of low-luminosity active galactic nuclei, including those observed by the Event Horizon Telescope (EHT). Our model is of synchrotron emission from an axisymmetric, magnetized plasma, constrained to flow within two oppositely oriented cones that are aligned with the black hole’s spin axis. We show this model can accurately reproduce images of a variety of time-averaged general relativistic magnetohydrodynamic simulations and that it accurately recovers the black hole spin, orientation, emission scale height, peak emission radius, and fluid flow direction from these simulations within a Bayesian inference framework using radio interferometric data. We show that nontrivial topologies in the images of relativistic accretion flows around black holes can result in nontrivial multimodal solutions when applied to observations with a sparse array, such as the EHT 2017 observations of M87*. The presence of these degeneracies underscores the importance of employing Bayesian techniques to adequately sample the posterior space for the interpretation of EHT measurements. We fit our model to the EHT observations of M87* and find a 95% highest posterior density interval for the mass-to-distance ratio ofθg∈ (2.84, 3.75)μas, and give an inclination ofθo∈ (11°, 24°). These new measurements are consistent with mass measurements from the EHT and stellar dynamical estimates and with the spin axis inclination inferred from properties of the M87* jet. 
    more » « less
  3. Abstract The Event Horizon Telescope (EHT) has produced resolved images of the supermassive black holes (SMBHs) Sgr A* and M87*, which present the largest shadows on the sky. In the next decade, technological improvements and extensions to the array will enable access to a greater number of sources, unlocking studies of a larger population of SMBHs through direct imaging. In this paper, we identify 12 of the most promising sources beyond Sgr A* and M87* based on their angular size and millimeter flux density. For each of these sources, we make theoretical predictions for their observable properties by ray tracing general relativistic magnetohydrodynamic models appropriately scaled to each target’s mass, distance, and flux density. We predict that these sources would have somewhat higher Eddington ratios than M87*, which may result in larger optical and Faraday depths than previous EHT targets. Despite this, we find that visibility amplitude size constraints can plausibly recover masses within a factor of 2, although the unknown jet contribution remains a significant uncertainty. We find that the linearly polarized structure evolves substantially with the Eddington ratio, with greater evolution at larger inclinations, complicating potential spin inferences for inclined sources. We discuss the importance of 345 GHz observations, milli-Jansky baseline sensitivity, and independent inclination constraints for future observations with upgrades to the EHT through ground updates with the next-generation EHT program and extensions to space through the black hole Explorer. 
    more » « less
  4. Abstract The Event Horizon Telescope (EHT) images of the supermassive black hole at the center of the galaxy M87 provided the first image of the accretion environment on horizon scales. General relativity (GR) predicts that the image of the shadow should be nearly circular given the inclination angle of the black hole M87*. A robust detection of ellipticity in image reconstructions of M87* could signal new gravitational physics on horizon scales. Here we analyze whether the imaging parameters used in EHT analyses are sensitive to ring ellipticity, and measure the constraints on the ellipticity of M87*. We find that the top set is unable to recover ellipticity. Even for simple geometric models, the true ellipticity is biased low, preferring circular rings. Therefore, to place a constraint on the ellipticity of M87*, we measure the ellipticity of 550 synthetic data sets produced from GRMHD simulations. We find that images with intrinsic axis ratios of 2:1 are consistent with the ellipticity seen from EHT image reconstructions. 
    more » « less
  5. ABSTRACT We introduce a new library of 535 194 model images of the supermassive black holes and Event Horizon Telescope (EHT) targets Sgr A* and M87*, computed by performing general relativistic radiative transfer calculations on general relativistic magnetohydrodynamics simulations. Then to infer underlying black hole and accretion flow parameters (spin, inclination, ion-to-electron temperature ratio, and magnetic field polarity), we train a random forest machine learning model on various hand-picked polarimetric observables computed from each image. Our random forest is capable of making meaningful predictions of spin, inclination, and the ion-to-electron temperature ratio, but has more difficulty inferring magnetic field polarity. To disentangle how physical parameters are encoded in different observables, we apply two different metrics to rank the importance of each observable at inferring each physical parameter. Details of the spatially resolved linear polarization morphology stand out as important discriminators between models. Bearing in mind the theoretical limitations and incompleteness of our image library, for the real M87* data, our machinery favours high-spin retrograde models with large ion-to-electron temperature ratios. Due to the time-variable nature of these targets, repeated polarimetric imaging will further improve model inference as the EHT and next-generation (EHT) continue to develop and monitor their targets. 
    more » « less