skip to main content


Title: Important Contribution of Bacterial Carbon and Nitrogen to Sinking Particle Export
Abstract

Photosynthesis in the surface ocean converts atmospheric CO2into organic particles, with the fraction sinking to depth representing a major part of the ocean's biological pump. Although sinking particles are known to be altered by attached‐bacteria during transit, most prior organic geochemical data indicated only minor replacement of plankton‐derived particles by bacterial material. We exploit bacteria‐specific biomarkers (d‐amino acids) in a multi‐year sediment trap in the Pacific Ocean (1,200 m) and suggest a different view. Majord‐amino acids were consistently measured at abundance demonstrating widespread accumulation of bacterial material in sinking particles. Bacterial detritus was estimated to account for up to 19% of particulate organic carbon and up to 36% of particulate nitrogen, much higher than cell count‐based values. The bacterial relative contribution increased with decreasing export production. Our results indicate that bacterial material constitutes an underappreciated component of the biological pump, a role expected to rise as the ocean warms.

 
more » « less
NSF-PAR ID:
10428715
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
11
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sinking particles are a critical conduit for the export of organic material from surface waters to the deep ocean. Despite their importance in oceanic carbon cycling and export, little is known about the biotic composition, origins, and variability of sinking particles reaching abyssal depths. Here, we analyzed particle-associated nucleic acids captured and preserved in sediment traps at 4,000-m depth in the North Pacific Subtropical Gyre. Over the 9-month time-series, Bacteria dominated both the rRNA-gene and rRNA pools, followed by eukaryotes (protists and animals) and trace amounts of Archaea. Deep-sea piezophile-like Gammaproteobacteria, along with Epsilonproteobacteria, comprised >80% of the bacterial inventory. Protists (mostly Rhizaria, Syndinales, and ciliates) and metazoa (predominantly pelagic mollusks and cnidarians) were the most common sinking particle-associated eukaryotes. Some near-surface water-derived eukaryotes, especially Foraminifera, Radiolaria, and pteropods, varied greatly in their abundance patterns, presumably due to sporadic export events. The dominance of piezophile-like Gammaproteobacteria and Epsilonproteobacteria, along with the prevalence of their nitrogen cycling-associated gene transcripts, suggested a central role for these bacteria in the mineralization and biogeochemical transformation of sinking particulate organic matter in the deep ocean. Our data also reflected several different modes of particle export dynamics, including summer export, more stochastic inputs from the upper water column by protists and pteropods, and contributions from sinking mid- and deep-water organisms. In total, our observations revealed the variable and heterogeneous biological origins and microbial activities of sinking particles that connect their downward transport, transformation, and degradation to deep-sea biogeochemical processes. 
    more » « less
  2. Abstract

    Particulate organic matter settling out of the euphotic zone is a major sink for atmospheric carbon dioxide and serves as a primary food source to mesopelagic food webs. Degradation of this organic matter encompasses a suite of mechanisms that attenuate flux, including heterotrophic metabolic processes of microbes and metazoans. The relative contributions of microbial and metazoan heterotrophy to flux attenuation, however, have been difficult to determine. We present results of compound specific nitrogen isotope analysis of amino acids of sinking particles from sediment traps and size‐fractionated particles from in situ filtration between the surface and 500 m at Ocean Station Papa, collected during NASA EXPORTS (EXport Processes in the Ocean from RemoTe Sensing). With increasing depth, we observe: (1) that, based on theδ15N values of threonine, fecal pellets dominate the sinking particle flux and that attenuation of downward particle flux occurs largely via disaggregation in the upper mesopelagic; (2) an increasing trophic position of particles in the upper water column, reflecting increasing heterotrophic contributions to the nitrogen pool and the loss of particles via remineralization; and (3) increasingδ15N values of source amino acids in submicron and small (1–6μm) particles, reflecting microbial particle solubilization. We further employ a Bayesian mixing model to estimate the relative proportions of fecal pellets, phytodetritus, and microbially degraded material in particles and compare these results and our interpretations of flux attenuation mechanisms to other, independent methods used during EXPORTS.

     
    more » « less
  3. null (Ed.)
    In the open ocean, elevated carbon flux (ECF) events increase the delivery of particulate carbon from surface waters to the seafloor by severalfold compared to other times of year. Since microbes play central roles in primary production and sinking particle formation, they contribute greatly to carbon export to the deep sea. Few studies, however, have quantitatively linked ECF events with the specific microbial assemblages that drive them. Here, we identify key microbial taxa and functional traits on deep-sea sinking particles that correlate positively with ECF events. Microbes enriched on sinking particles in summer ECF events included symbiotic and free-living diazotrophic cyanobacteria, rhizosolenid diatoms, phototrophic and heterotrophic protists, and photoheterotrophic and copiotrophic bacteria. Particle-attached bacteria reaching the abyss during summer ECF events encoded metabolic pathways reflecting their surface water origins, including oxygenic and aerobic anoxygenic photosynthesis, nitrogen fixation, and proteorhodopsin-based photoheterotrophy. The abundances of some deep-sea bacteria also correlated positively with summer ECF events, suggesting rapid bathypelagic responses to elevated organic matter inputs. Biota enriched on sinking particles during a spring ECF event were distinct from those found in summer, and included rhizaria, copepods, fungi, and different bacterial taxa. At other times over our 3-y study, mid- and deep-water particle colonization, predation, degradation, and repackaging (by deep-sea bacteria, protists, and animals) appeared to shape the biotic composition of particles reaching the abyss. Our analyses reveal key microbial players and biological processes involved in particle formation, rapid export, and consumption, that may influence the ocean’s biological pump and help sustain deep-sea ecosystems. 
    more » « less
  4. Abstract

    The sinking of organic particles produced in the upper sunlit layers of the ocean forms an important limb of the oceanic biological pump, which impacts the sequestration of carbon and resupply of nutrients in the mesopelagic ocean. Particles raining out from the upper ocean undergo remineralization by bacteria colonized on their surface and interior, leading to an attenuation in the sinking flux of organic matter with depth. Here, we formulate a mechanistic model for the depth-dependent, sinking, particulate mass flux constituted by a range of sinking, remineralizing particles. Like previous studies, we find that the model does not achieve the characteristic ‘Martin curve’ flux profile with a single type of particle, but instead requires a distribution of particle sizes and/or properties. We consider various functional forms of remineralization appropriate for solid/compact particles, and aggregates with an anoxic or oxic interior. We explore the sensitivity of the shape of the flux vs. depth profile to the choice of remineralization function, relative particle density, particle size distribution, and water column density stratification, and find that neither a power-law nor exponential function provides a definitively superior fit to the modeled profiles. The profiles are also sensitive to the time history of the particle source. Varying surface particle size distribution (via the slope of the particle number spectrum) over 3 days to represent a transient phytoplankton bloom results in transient subsurface maxima or pulses in the sinking mass flux. This work contributes to a growing body of mechanistic export flux models that offer scope to incorporate underlying dynamical and biological processes into global carbon cycle models.

     
    more » « less
  5. Abstract

    To better quantify the ocean's biological carbon pump, we resolved the diversity of sinking particles that transport carbon into the ocean's interior, their contribution to carbon export, and their attenuation with depth. Sinking particles collected in sediment trap gel layers from four distinct ocean ecosystems were imaged, measured, and classified. The size and identity of particles was used to model their contribution to particulate organic carbon (POC) flux. Measured POC fluxes were reasonably predicted by particle images. Nine particle types were identified, and most of the compositional variability was driven by the relative contribution of aggregates, long cylindrical fecal pellets, and salp fecal pellets. While particle composition varied across locations and seasons, the entire range of compositions was measured at a single well‐observed location in the subarctic North Pacific over one month, across 500 m of depth. The magnitude of POC flux was not consistently associated with a dominant particle class, but particle classes did influence flux attenuation. Long fecal pellets attenuated most rapidly with depth whereas certain other classes attenuated little or not at all with depth. Small particles (<100 μm) consistently contributed ∼5% to total POC flux in samples with higher magnitude fluxes. The relative importance of these small particle classes (spherical mini pellets, short oval fecal pellets, and dense detritus) increased in low flux environments (up to 46% of total POC flux). Imaging approaches that resolve large variations in particle composition across ocean basins, depth, and time will help to better parameterize biological carbon pump models.

     
    more » « less