Abstract We present spectroscopic chemical abundances of red giant branch stars in Andromeda (M31), using medium-resolution (R∼ 6000) spectra obtained via the Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo survey. In addition to individual chemical abundances, we coadd low signal-to-noise ratio spectra of stars to obtain a high enough signal to measure average [Fe/H] and [α/Fe] abundances. We obtain individual and coadded measurements for [Fe/H] and [α/Fe] for M31 halo stars, covering a range of 9–180 kpc in projected radius from the center of M31. With these measurements, we greatly increase the number of outer halo (Rproj> 50 kpc) M31 stars with spectroscopic [Fe/H] and [α/Fe], adding abundance measurements for 45 individual stars and 33 coadds from a pool of an additional 174 stars. We measure the spectroscopic metallicity ([Fe/H]) gradient, finding a negative radial gradient of −0.0084 ± 0.0008 for all stars in the halo, consistent with gradient measurements obtained using photometric metallicities. Using the first measurements of [α/Fe] for M31 halo stars covering a large range of projected radii, we find a positive gradient (+0.0027 ± 0.0005) in [α/Fe] as a function of projected radius. We also explore the distribution in [Fe/H]–[α/Fe] space as a function of projected radius for both individual and coadded measurements in the smooth halo, and compare these measurements to those stars potentially associated with substructure. These spectroscopic abundance distributions add to existing evidence that M31 has had an appreciably different formation and merger history compared to our own Galaxy. 
                        more » 
                        « less   
                    
                            
                            HALO7D. III. Chemical Abundances of Milky Way Halo Stars from Medium-resolution Spectra
                        
                    
    
            Abstract The Halo Assembly in Lambda Cold Dark Matter: Observations in 7 Dimensions (HALO7D) survey measures the kinematics and chemical properties of stars in the Milky Way (MW) stellar halo to learn about the formation of our Galaxy. HALO7D consists of Keck II/DEIMOS spectroscopy and Hubble Space Telescope–measured proper motions of MW halo main-sequence turnoff stars in the four Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey fields. HALO7D consists of deep pencil beams, making it complementary to other contemporary wide-field surveys. We present the [Fe/H] and [α/Fe] abundances for 113 HALO7D stars in the Galactocentric radial range of ∼10–40 kpc along four separate pointings. Using the full 7D chemodynamical data (3D positions, 3D velocities, and abundances) of HALO7D, we measure the velocity anisotropy,β, of the halo velocity ellipsoid for each field and for different metallicity-binned subsamples. We find that two of the four fields have stars on very radial orbits, while the remaining two have stars on more isotropic orbits. Separating the stars into high-, mid-, and low-[Fe/H] bins at −2.2 and −1.1 dex for each field separately, we find differences in the anisotropies between the fields and between the bins; some fields appear dominated by radial orbits in all bins, while other fields show variation between the [Fe/H] bins. These chemodynamical differences are evidence that the HALO7D fields have different fractional contributions from the progenitors that built up the MW stellar halo. Our results highlight the additional information available on smaller spatial scales compared to results from a spherical average of the stellar halo. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2233781
- PAR ID:
- 10428724
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 951
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 43
- Size(s):
- Article No. 43
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT We identified a sample of 58 candidate stars with metallicity [Fe/H] ≲ −0.8 that likely belong to the old bulge spheroid stellar population, and analyse their Na and Al abundances from Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra. In a previous work, we inspected APOGEE-Stellar Parameter and Chemical Abundance Pipeline abundances of C, N, O, Mg, Al, Ca, Si, and Ce in this sample. Regarding Na lines, one of them appears very strong in about 20 per cent of the sample stars, but it is not confirmed by other Na lines, and can be explained by sky lines, which affect the reduced spectra of stars in a certain radial velocity range. The Na abundances for 15 more reliable cases were taken into account. Al lines in the H band instead appear to be very reliable. Na and Al exhibit a spread in abundances, whereas no spread in N abundances is found, and we found no correlation between them, indicating that these stars could not be identified as second-generation stars that originated in globular clusters. We carry out the study of the behaviour of Na and Al in our sample of bulge stars and literature data by comparing them with chemodynamical evolution model suitable for the Galactic bulge. The Na abundances show a large spread, and the chemodynamical models follow the main data, whereas for aluminum instead, the models reproduce very satisfactorily the nearly secondary-element behaviour of aluminum in the metallicity range below [Fe/H] ≲ −1.0. For the lower-metallicity end ([Fe/H < −2.5), hypernovae are assumed to be the main contributor to yields.more » « less
- 
            ABSTRACT The characteristics of the stellar populations in the Galactic bulge inform and constrain the Milky Way’s formation and evolution. The metal-poor population is particularly important in light of cosmological simulations, which predict that some of the oldest stars in the Galaxy now reside in its centre. The metal-poor bulge appears to consist of multiple stellar populations that require dynamical analyses to disentangle. In this work, we undertake a detailed chemodynamical study of the metal-poor stars in the inner Galaxy. Using R ∼ 20 000 VLT/GIRAFFE spectra of 319 metal-poor (−2.55 dex ≤ [Fe/H] ≤ 0.83 dex, with $$\overline{\rm {[Fe/H]}}$$ = −0.84 dex) stars, we perform stellar parameter analysis and report 12 elemental abundances (C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Zn, Ba, and Ce) with precisions of ≈0.10 dex. Based on kinematic and spatial properties, we categorize the stars into four groups, associated with the following Galactic structures: the inner bulge, the outer bulge, the halo, and the disc. We find evidence that the inner and outer bulge population is more chemically complex (i.e. higher chemical dimensionality and less correlated abundances) than the halo population. This result suggests that the older bulge population was enriched by a larger diversity of nucleosynthetic events. We also find one inner bulge star with a [Ca/Mg] ratio consistent with theoretical pair-instability supernova yields and two stars that have chemistry consistent with globular cluster stars.more » « less
- 
            Context. The oldest stars in the Milky Way are metal-poor with [Fe/H] < −1.0, displaying peculiar elemental abundances compared to solar values. The relative variations in the chemical compositions among stars is also increasing with decreasing stellar metallicity, allowing for the pure signature of unique nucleosynthesis processes to be revealed. The study of ther-process is, for instance, one of the main goals of stellar archaeology and metal-poor stars exhibit an unexpected complexity in the stellar production of ther-process elements in the early Galaxy. Aims. In this work, we report the atmospheric parameters, main dynamic properties, and the abundances of four metal-poor stars: HE 1523-0901, HD 6268, HD 121135, and HD 195636 (−1.5 > [Fe/H] > −3.0). Methods. The abundances were derived from spectra obtained with the HRS echelle spectrograph at the Southern African Large Telescope, using both local and non-local thermodynamic equilibrium (LTE and NLTE) approaches, with the average error between 0.10 and 0.20 dex. Results. Based on their kinematical properties, we show that HE 1523-0901 and HD 195636 are halo stars with typical high velocities. In particular, HD 121135 displays a peculiar kinematical behaviour, making it unclear whether it is a halo or an accreted star. Furthermore, HD 6268 is possibly a rare prototype of very metal-poor thick disk stars. The abundances derived for our stars are compared with theoretical stellar models and with other stars with similar metallicity values from the literature. Conclusions. HD 121135 is Al-poor and Sc-poor, compared to stars observed in the same metallicity range (−1.62 > [Fe/H] > −1.12). The most metal-poor stars in our sample, HE 1523-0901, HD 6268, and HD 195636, exhibit anomalies that are better explained by supernova models from fast-rotating stellar progenitors for elements up to the Fe group. Compared to other stars in the same metal-licity range, their common biggest anomaly is represented by the low Sc abundances. If we consider the elements beyond Zn, HE 1523-0901 can be classified as an r-II star, HD 6268 as an r-I candidate, and HD 195636 and HD 121135 exhibiting a borderliner-process enrichment between limited-r and r-I star. Significant relative differences are observed between the r-process signatures in these stars.more » « less
- 
            Abstract We use halo dwarf stars with photometrically determined metallicities that are located within 2 kpc of the Sun to identify local halo substructure. The kinematic properties of these stars do not indicate a single, dominant radial merger event (RME). The retrograde Virgo Radial Merger (VRM) component has [Fe/H] = −1.7. A second, nonrotating RME component we name Nereus is identified with [Fe/H] = −2.1 and has similar energy to the VRM. We identify a possible third RME, which we name Cronus, that is corotating with the disk, has lower energy than the VRM, and has [Fe/H] = −1.2. We identify the Nyx Stream in the data. In addition to these substructures, we observe metal-poor halo stars ([Fe/H] ∼ −2.0 andσv∼ 180 km s−1) and a disk/Splash component with lower rotational velocity than the disk and lower metallicity than typically associated with the Splash. An additional excess of halo stars with low velocity and metallicity of [Fe/H] = −1.5 could be associated with the shell of a lower-energy RME or indicate that lower-energy halo stars have higher metallicity. Stars that comprise the “Gaia Sausage” velocity structure are a combination of the components identified in this work.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
