skip to main content


This content will become publicly available on July 1, 2025

Title: Peculiarities of the chemical enrichment of metal-poor stars in the Milky Way Galaxy

Context. The oldest stars in the Milky Way are metal-poor with [Fe/H] < −1.0, displaying peculiar elemental abundances compared to solar values. The relative variations in the chemical compositions among stars is also increasing with decreasing stellar metallicity, allowing for the pure signature of unique nucleosynthesis processes to be revealed. The study of ther-process is, for instance, one of the main goals of stellar archaeology and metal-poor stars exhibit an unexpected complexity in the stellar production of ther-process elements in the early Galaxy.

Aims. In this work, we report the atmospheric parameters, main dynamic properties, and the abundances of four metal-poor stars: HE 1523-0901, HD 6268, HD 121135, and HD 195636 (−1.5 > [Fe/H] > −3.0).

Methods. The abundances were derived from spectra obtained with the HRS echelle spectrograph at the Southern African Large Telescope, using both local and non-local thermodynamic equilibrium (LTE and NLTE) approaches, with the average error between 0.10 and 0.20 dex.

Results. Based on their kinematical properties, we show that HE 1523-0901 and HD 195636 are halo stars with typical high velocities. In particular, HD 121135 displays a peculiar kinematical behaviour, making it unclear whether it is a halo or an accreted star. Furthermore, HD 6268 is possibly a rare prototype of very metal-poor thick disk stars. The abundances derived for our stars are compared with theoretical stellar models and with other stars with similar metallicity values from the literature.

Conclusions. HD 121135 is Al-poor and Sc-poor, compared to stars observed in the same metallicity range (−1.62 > [Fe/H] > −1.12). The most metal-poor stars in our sample, HE 1523-0901, HD 6268, and HD 195636, exhibit anomalies that are better explained by supernova models from fast-rotating stellar progenitors for elements up to the Fe group. Compared to other stars in the same metal-licity range, their common biggest anomaly is represented by the low Sc abundances. If we consider the elements beyond Zn, HE 1523-0901 can be classified as an r-II star, HD 6268 as an r-I candidate, and HD 195636 and HD 121135 exhibiting a borderliner-process enrichment between limited-r and r-I star. Significant relative differences are observed between the r-process signatures in these stars.

 
more » « less
Award ID(s):
1927130
NSF-PAR ID:
10543461
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Astronomy & Astrophysics
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
687
ISSN:
0004-6361
Page Range / eLocation ID:
A229
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We present a chemo-dynamical analysis for 27 near main-sequence turnoff metal-poor stars, including 20 stars analysed for the first time. The sample spans a range in [Fe/H] from −2.5 to −3.6, with 44 per cent having [Fe/H]<−2.9. We derived chemical abundances for 17 elements, including strontium and barium. We derive Li abundances for the sample, which are in good agreement with the ‘Spite Plateau’ value. The lighter elements (Z < 30) generally agree well with those of other low-metallicity halo stars. This broadly indicates chemically homogeneous gas at the earliest times. We used the [Sr/Ba] versus [Ba/Fe] diagram to classify metal-poor stars into five populations based on their observed ratios. We find HE 0232 − 3755 to be a likely main r-process star, and HE 2214 − 6127 and HE 2332 − 3039 to be limited-r stars. CS30302-145, HE 2045 − 5057, and CD −24°17504 plausibly originated in long-disrupted early dwarf galaxies. We also find that the derived [Sr/H] and [Ba/H] values for CD −24°17504 are not inconsistent with the predicted yields of the s-process in massive rotating low-metallicity stars models. Further theoretical explorations will be helpful to better understand the earliest mechanisms and time scales of heavy element production for comparison with these and other observational abundance data. Finally, we investigate the orbital histories of our stars. Most display halo-like kinematics although three stars (CS 29504-018, HE 0223 − 2814, and HE 2133 − 0421) appear to be disc-like in nature. This confirms the extragalactic origin for CS 30302-145, HE 2045 − 5057, and, in particular, CD −24°17504 which likely originated from a small accreted stellar system as one of the oldest stars.

     
    more » « less
  2. ABSTRACT

    We present detailed chemical compositions of four stars on the first-ascent red giant branch that are classified as chemically peculiar, but lack comprehensive analyses at high spectral resolution. For BD+03°2688, HE 0457−1805, HE 1255−2324, and HE 2207−1746, we derived metallicities [Fe/H] = −1.21, −0.19, −0.31, and −0.55, respectively, indicating a range in Galactic population membership. In addition to atmospheric parameters, we extracted elemental abundances for 28 elements, including the evolutionary-sensitive CNO group and 12C/13C ratios. Novel results are also presented for the heavy elements tungsten and thallium. All four stars have very large enhancements of neutron-capture elements, with high [La/Eu] ratios indicating enrichments from the slow neutron capture (s-process). To interpret these abundances, all indicative of [s/Fe] >1.0, we compared our results with data from literature, as well as with predictions from the Monash and fruity s-process nucleosynthesis models. BD+03°2688, HE 1255−2324, and HE 2207−1746 show C/O >1, while HE 0457−1805 has C/O <1. Since HE 0457−1805 and HE 1255−2324 are binary stars, their peculiarities are attributable to mass transfer. We identified HE 0457−1805 as a new barium giant star, and HE 1255−2324 as a new CH star, in fact a higher metallicity analogue CEMP-r/s star; the single object reported in literature so far with similar characteristics is the barium star HD 100503 ([Fe/H] = −0.72). A systematic monitoring is needed to confirm the binary nature of BD+03°2688 and HE 2207−1746, which are probably CH stars.

     
    more » « less
  3. Abstract

    We present results from high-resolution (R∼ 40,000) spectroscopic observations of over 200 metal-poor stars, mostly selected from the RAVE survey, using the Southern African Large Telescope. We were able to derive stellar parameters for a total of 108 stars; an additional sample of 50 stars from this same effort was previously reported on by Rasmussen et al. Among our newly reported observations, we identify 84 very metal-poor (VMP; [Fe/H] < −2.0, 53 newly identified) stars and three extremely metal-poor (EMP; [Fe/H] < −3.0, one newly identified) stars. The elemental abundances were measured for carbon, as well as several otherα-elements (Mg, Ca, Sc, and Ti), iron-peak elements (Mn, Co, Ni, and Zn), and neutron-capture elements (Sr, Ba, and Eu). Based on these measurements, the stars are classified by their carbon and neutron-capture abundances into carbon-enhanced metal-poor (CEMP; [C/Fe] > +0.70), CEMP subclasses, and by the level of theirr-process abundances. A total of 17 are classified as CEMP stars. There are 11 CEMP-rstars (eight newly identified), one CEMP-sstar (newly identified), two possible CEMP-istars (one newly identified), and three CEMP-no stars (all newly identified) in this work. We found 11 stars (eight newly identified) that are strongly enhanced inr-process elements (r-II; [Eu/Fe] > +0.70), 38 stars (31 newly identified) that are moderately enhanced inr-process elements (r-I; +0.30 < [Eu/Fe] ≤ + 0.70), and one newly identified limited-rstar.

     
    more » « less
  4. ABSTRACT

    We present a comprehensive analysis of the detailed chemical abundances for a sample of 11 metal-poor, very metal-poor, and extremely metal-poor stars ([Fe/H] = −1.65 to [Fe/H]  = −3.0) as part of the HESP-GOMPA (Galactic survey Of Metal Poor stArs) survey. The abundance determinations encompass a range of elements, including C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, and Ba, with a subset of the brighter objects allowing for the measurement of additional key elements. Notably, the abundance analysis of a relatively bright highly r-process-enhanced (r-II) star (SDSS J0019+3141) exhibits a predominantly main r-process signature and variations in the lighter r-process elements. Moreover, successful measurements of thorium in this star facilitate stellar age determinations. We find a consistent odd–even nucleosynthesis pattern in these stars, aligning with expectations for their respective metallicity levels, thus implicating Type II supernovae as potential progenitors. From the interplay between the light and heavy r-process elements, we infer a diminishing relative production of light r-process elements with increasing Type II supernova contributions, challenging the notion that Type II supernovae are the primary source of these light r-process elements in the early Milky Way. A chemodynamical analysis based on Gaia astrometric data and our derived abundances indicates that all but one of our program stars are likely to be of accreted origin. Additionally, our examination of α-poor stars underscores the occurrence of an early accretion event from a satellite on a prograde orbit, similar to that of the Galactic disc.

     
    more » « less
  5. Abstract

    Highlyr-process-enhanced (RPE) stars are rare and usually metal poor ([Fe/H] < −1.0), and they mainly populate the Milky Way halo and dwarf galaxies. This study presents the discovery of a relatively bright (V= 12.72), highly RPE (r-II) star ([Eu/Fe] = +1.32, [Ba/Eu] = −0.95), LAMOST J020623.21+494127.9. This star was selected from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope medium-resolution (R∼ 7500) spectroscopic survey; follow-up high-resolution (R∼ 25,000) observations were conducted with the High Optical Resolution Spectrograph installed on the Gran Telescopio Canarias. The stellar parameters (Teff= 4130 K,logg= 1.52, [Fe/H] = −0.54,ξ= 1.80 km s−1) have been inferred taking into account nonlocal thermodynamic equilibrium effects. The abundances of [Ce/Fe], [Pr/Fe], and [Nd/Fe] are +0.19, +0.65, and +0.64, respectively, relatively low compared to the Solarr-process pattern normalized to Eu. This star has a high metallicity ([Fe/H] = −0.54) compared to most other highly RPE stars and has the highest measured abundance ratio of Eu to H ([Eu/H] = +0.78). It is classified as a thin-disk star based on its kinematics and does not appear to belong to any known stream or dwarf galaxy.

     
    more » « less