skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nonlinear Causal Discovery with Confounders
This article introduces a causal discovery method to learn nonlinear relationships in a directed acyclic graph with correlatedGaussian errors due to confounding. First,we derive model identifiability under the sublinear growth assumption. Then, we propose a novel method, named the Deconfounded Functional Structure Estimation (DeFuSE), consisting of a deconfounding adjustment to remove the confounding effects and a sequential procedure to estimate the causal order of variables. We implement DeFuSE via feedforward neural networks for scalable computation. Moreover, we establish the consistency of DeFuSE under an assumption called the strong causal minimality. In simulations, DeFuSE compares favorably against state of-the-art competitors that ignore confounding or nonlinearity. Finally, we demonstrate the utility and effectiveness of the proposed approach with an application to gene regulatory network analysis. The Python implementation is available at https://github.com/chunlinli/defuse. Supplementary materials for this article are available online.  more » « less
Award ID(s):
1952539
PAR ID:
10428960
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of the American Statistical Association
ISSN:
0162-1459
Page Range / eLocation ID:
1 to 10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Estimating an individual treatment effect (ITE) is essential to personalized decision making. However, existing methods for estimating the ITE often rely on unconfoundedness, an assumption that is fundamentally untestable with observed data. To assess the robustness of individual-level causal conclusion with unconfoundedness, this article proposes a method for sensitivity analysis of the ITE, a way to estimate a range of the ITE under unobserved confounding. The method we develop quantifies unmeasured confounding through a marginal sensitivity model, and adapts the framework of conformal inference to estimate an ITE interval at a given confounding strength. In particular, we formulate this sensitivity analysis as a conformal inference problem under distribution shift, and we extend existing methods of covariate-shifted conformal inference to this more general setting. The resulting predictive interval has guaranteed nominal coverage of the ITE and provides this coverage with distribution-free and nonasymptotic guarantees.We evaluate the method on synthetic data and illustrate its application in an observational study. Supplementary materials for this article are available online. 
    more » « less
  2. Estimating an individual treatment effect (ITE) is essential to personalized decision making. However, existing methods for estimating the ITE often rely on unconfoundedness, an assumption that is fundamentally untestable with observed data. To assess the robustness of individual-level causal conclusion with unconfoundedness, this article proposes a method for sensitivity analysis of the ITE, a way to estimate a range of the ITE under unobserved confounding. The method we develop quantifies unmeasured confounding through a marginal sensitivity model, and adapts the framework of conformal inference to estimate an ITE interval at a given confounding strength. In particular, we formulate this sensitivity analysis as a conformal inference problem under distribution shift, and we extend existing methods of covariate-shifted conformal inference to this more general setting. The resulting predictive interval has guaranteed nominal coverage of the ITE and provides this coverage with distribution-free and nonasymptotic guarantees.We evaluate the method on synthetic data and illustrate its application in an observational study. Supplementary materials for this article are available online. 
    more » « less
  3. Abstract Assessing sensitivity to unmeasured confounding is an important step in observational studies, which typically estimate effects under the assumption that all confounders are measured. In this paper, we develop a sensitivity analysis framework for balancing weights estimators, an increasingly popular approach that solves an optimization problem to obtain weights that directly minimizes covariate imbalance. In particular, we adapt a sensitivity analysis framework using the percentile bootstrap for a broad class of balancing weights estimators. We prove that the percentile bootstrap procedure can, with only minor modifications, yield valid confidence intervals for causal effects under restrictions on the level of unmeasured confounding. We also propose an amplification—a mapping from a one-dimensional sensitivity analysis to a higher dimensional sensitivity analysis—to allow for interpretable sensitivity parameters in the balancing weights framework. We illustrate our method through extensive real data examples. 
    more » « less
  4. Abstract Investigating the causal relationship between exposure and time-to-event outcome is an important topic in biomedical research. Previous literature has discussed the potential issues of using hazard ratio (HR) as the marginal causal effect measure due to noncollapsibility. In this article, we advocate using restricted mean survival time (RMST) difference as a marginal causal effect measure, which is collapsible and has a simple interpretation as the difference of area under survival curves over a certain time horizon. To address both measured and unmeasured confounding, a matched design with sensitivity analysis is proposed. Matching is used to pair similar treated and untreated subjects together, which is generally more robust than outcome modeling due to potential misspecifications. Our propensity score matched RMST difference estimator is shown to be asymptotically unbiased, and the corresponding variance estimator is calculated by accounting for the correlation due to matching. Simulation studies also demonstrate that our method has adequate empirical performance and outperforms several competing methods used in practice. To assess the impact of unmeasured confounding, we develop a sensitivity analysis strategy by adapting the E -value approach to matched data. We apply the proposed method to the Atherosclerosis Risk in Communities Study (ARIC) to examine the causal effect of smoking on stroke-free survival. 
    more » « less
  5. Granger causality is among the widely used data-driven approaches for causal analysis of time series data with applications in various areas including economics, molecular biology, and neuroscience. Two of the main challenges of this methodology are: 1) over-fitting as a result of limited data duration, and 2) correlated process noise as a confounding factor, both leading to errors in identifying the causal influences. Sparse estimation via the LASSO has successfully addressed these challenges for parameter estimation. However, the classical statistical tests for Granger causality resort to asymptotic analysis of ordinary least squares, which require long data duration to be useful and are not immune to confounding effects. In this work, we address this disconnect by introducing a LASSO-based statistic and studying its non-asymptotic properties under the assumption that the true models admit sparse autoregressive representations. We establish fundamental limits for reliable identification of Granger causal influences using the proposed LASSO-based statistic. We further characterize the false positive error probability and test power of a simple thresholding rule for identifying Granger causal effects and provide two methods to set the threshold in a data-driven fashion. We present simulation studies and application to real data to compare the performance of our proposed method to ordinary least squares and existing LASSO-based methods in detecting Granger causal influences, which corroborate our theoretical results. 
    more » « less