skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1952539

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Lee, Kyoung Mu (Ed.)
    This paper introduces a novel Perturbation-Assisted Inference (PAI) framework utilizing synthetic data generated by the Perturbation-Assisted Sample Synthesis (PASS) method. The framework focuses on uncertainty quantification in complex data scenarios, particularly involving unstructured data while utilizing deep learning models. On one hand, PASS employs a generative model to create synthetic data that closely mirrors raw data while preserving its rank properties through data perturbation, thereby enhancing data diversity and bolstering privacy. By incorporating knowledge transfer from large pretrained generative models, PASS enhances estimation accuracy, yielding refined distributional estimates of various statistics via Monte Carlo experiments. On the other hand, PAI boasts its statistically guaranteed validity. In pivotal inference, it enables precise conclusions even without prior knowledge of the pivotal’s distribution. In non-pivotal situations, we enhance the reliability of synthetic data generation by training it with an independent holdout sample. We demonstrate the effectiveness of PAI in advancing uncertainty quantification in complex, data-driven tasks by applying it to diverse areas such as image synthesis, sentiment word analysis, multimodal inference, and the construction of prediction intervals. 
    more » « less
  2. This article proposes a novel causal discovery and inference method called GrIVET for a Gaussian directed acyclic graph with unmeasured confounders. GrIVET consists of an order-based causal discovery method and a likelihood-based inferential procedure. For causal discovery, we generalize the existing peeling algorithm to estimate the ancestral relations and candidate instruments in the presence of hidden confounders. Based on this, we propose a new procedure for instrumental variable estimation of each direct effect by separating it from any mediation effects. For inference, we develop a new likelihood ratio test of multiple causal effects that is able to account for the unmeasured confounders. Theoretically, we prove that the proposed method has desirable guarantees, including robustness to invalid instruments and uncertain interventions, estimation consistency, low-order polynomial time complexity, and validity of asymptotic inference. Numerically, GrIVET performs well and compares favorably against state-of-the-art competitors. Furthermore, we demonstrate the utility and effectiveness of the proposed method through an application inferring regulatory pathways from Alzheimer’s disease gene expression data. 
    more » « less
  3. In manufacturing, causal relations between components have become crucial to automate assembly lines. Identifying these relations permits error tracing and correction in the absence of domain experts, in addition to advancing our knowledge about the operating characteristics of a complex system. This paper is motivated by a case study focusing on deciphering the causal structure of a wafer manufacturing system using data from sensors and abnormality monitors deployed within the assembly line. In response to the distinctive characteristics of the wafer manufacturing data, such as multimodality, high-dimensionality, imbalanced classes, and irregular missing patterns, we propose a hierarchical ensemble approach. This method leverages the temporal and domain constraints inherent in the assembly line and provides a measure of uncertainty in causal discovery. We extensively examine its operating characteristics via simulations and validate its effectiveness through simulation experiments and a practical application involving data obtained from Seagate Technology. Domain engineers have cross-validated the learned structures and corroborated the identified causal relationships. 
    more » « less
  4. This article introduces a causal discovery method to learn nonlinear relationships in a directed acyclic graph with correlatedGaussian errors due to confounding. First,we derive model identifiability under the sublinear growth assumption. Then, we propose a novel method, named the Deconfounded Functional Structure Estimation (DeFuSE), consisting of a deconfounding adjustment to remove the confounding effects and a sequential procedure to estimate the causal order of variables. We implement DeFuSE via feedforward neural networks for scalable computation. Moreover, we establish the consistency of DeFuSE under an assumption called the strong causal minimality. In simulations, DeFuSE compares favorably against state of-the-art competitors that ignore confounding or nonlinearity. Finally, we demonstrate the utility and effectiveness of the proposed approach with an application to gene regulatory network analysis. The Python implementation is available at https://github.com/chunlinli/defuse. Supplementary materials for this article are available online. 
    more » « less
  5. critical to reveal a blackbox model’s decision-making process from raw data to prediction. In this article, we use two real datasets, the MNIST handwritten digits and MIT-BIH Electrocardiogram (ECG) signals, to motivate key characteristics of discriminative features, namely adaptiveness, predictive importance and effectiveness. Then, we develop a localization framework based on adversarial attacks to effectively localize discriminative features. In contrast to existing heuristic methods, we also provide a statistically guaranteed interpretability of the localized features by measuring a generalized partial R2. We apply the proposed method to the MNIST dataset and the MIT-BIH dataset with a convolutional auto-encoder. In the first, the compact image regions localized by the proposed method are visually appealing. Similarly, in the second, the identified ECG features are biologically plausible and consistent with cardiac electrophysiological principles while locating subtle anomalies in a QRS complex that may not be discernible by the naked eye. Overall, the proposed method compares favorably with state-of-the-art competitors. Accompanying this paper is a Python library dnn-locate that implements the proposed approach. 
    more » « less
  6. Bouamor, Houda; Pino, Juan; Bali, Kalia (Ed.)
    This paper presents FlowSUM, a normalizing flows-based variational encoder-decoder framework for Transformer-based summarization. Our approach tackles two primary challenges in variational summarization: insufficient semantic information in latent representations and posterior collapse during training. To address these challenges, we employ normalizing flows to enable flexible latent posterior modeling, and we propose a controlled alternate aggressive training (CAAT) strategy with an improved gate mechanism. Experimental results show that FlowSUM significantly enhances the quality of generated summaries and unleashes the potential for knowledge distillation with minimal impact on inference time. Furthermore, we investigate the issue of posterior collapse in normalizing flows and analyze how the summary quality is affected by the training strategy, gate initialization, and the type and number of normalizing flows used, offering valuable insights for future research. 
    more » « less
  7. Pradeep Ravikumar (Ed.)
    Statistical inference of directed relations given some unspecified interventions (i.e., the intervention targets are unknown) is challenging. In this article, we test hypothesized directed relations with unspecified interventions. First, we derive conditions to yield an identifiable model. Unlike classical inference, testing directed relations requires identifying the ancestors and relevant interventions of hypothesis-specific primary variables. To this end, we propose a peeling algorithm based on nodewise regressions to establish a topological order of primary variables. Moreover, we prove that the peeling algorithm yields a consistent estimator in low-order polynomial time. Second, we propose a likelihood ratio test integrated with a data perturbation scheme to account for the uncertainty of identifying ancestors and interventions. Also, we show that the distribution of a data perturbation test statistic converges to the target distribution. Numerical examples demonstrate the utility and effectiveness of the proposed methods, including an application to infer gene regulatory networks. The R implementation is available at https://github.com/chunlinli/intdag. 
    more » « less