The Wasatch Mountains expose an oblique profile through the Alta and Little Cottonwood stocks (LCS) owing to 20° eastward tilt in the footwall of the Wasatch Fault. The cross section spans the upper 11 km of the crust beneath the Eocene paleosurface exposed in Park City, UT. Previous titanite and zircon U-Pb petrochronology established 10 Myr of simultaneous magmatism and hydrothermal metamorphism both in the deeper LCS and in the shallower Alta stock which likely was the conduit between the LCS and cogenetic Keetley volcanic deposits. Hydrothermal metamorphism within and surrounding the Alta stock was synchronous with and most likely driven by emplacement of LCS and migrated from within the Alta stock and contact aureole to margins of the stock suggesting an evolving permeability structure during and after the crystallization of the LCS. New titanite U-Pb petrochronology from the LCS and stock-bounding Wasatch Fault Zone indicate that 1) the LCS was constructed in two phases, an earlier ~36–34 Ma and a younger ~32–25 Ma phase, 2) the presence of both magmatic and hydrothermal titanite as recorded by trace element chemistry, and 3) a pre-Wasatch Fault ductile shear zone likely accommodated magma emplacement at crustal strain rates beginning around 32 Ma. Principal component analysis of LCS trace element data distinguishes two end-member titanite populations along the first component axis: a magmatic population with high REE and a metamorphic population with low REE and high Sr, Sc, V, Cr, Fe, Al, Pb, and particularly W. The second principal component is defined by variance in the REE interpreted to record fractionation by titanite crystallization from melt. The initial ~36–34 Ma phase of LCS construction overlaps with magmatism within the Alta stock conduit and Keetley volcanic rocks and is only found on the western, deepest portion of the LCS. Trace element chemistry of ~36–34 Ma titanites lacks the low REE, high W population suggesting that hydrothermal water released by crystallizing magma did not percolate through these rocks. Low REE, high W titanites are restricted to the structurally higher second phase of the LCS. Despite this relationship, not all samples in the second LCS phase contain the hydrothermal population, which suggests spatially complex magma emplacement and/or later hydrothermal permeability structure.
more »
« less
Titanite zonation records magmatic to autometamorphic transition in the Little Cottonwood stock, Utah
Granite textures are usually assumed to be unmodified igneous features, but titanite petrochronoloy records a progression from magmatic crystallization to fluid-mediated automorphism in the Little Cottonwood stock (LCS). The Wasatch Mountains expose a profile through the 36-25 Ma Wasatch Igneous Belt owing to 20° eastward tilt in the footwall of the Wasatch Fault. The LCS, Alta stock (AS) and their contact aureoles form an integrated magmatic-hydrothermal system that underpinned the cogenetic Keetley Volcanics (KV). The AS (~3-5 km depth) likely formed a conduit from the deeper LCS (~6-11 km) to the KV. The LCS formed in two phases: 1) ~36–33 Ma, coeval with the AS and KV, and 2) ~32–25 Ma, younger than KV and AS but at this time hydrothermal fluid infiltrated the AS to form endoskarn. LCS titanite was analyzed by LASS-ICP-MS in 16 samples of unaltered granite (s.l.) collected along transects from the roof on the east to the deepest exposures on the west and from the northern wall to the southern wall. Principal component analysis of titanite trace-element data distinguishes a magmatic group with high REE and a metamorphic group with low REE and high W, Sr, Sc, V, Cr, Fe, Al, and Pb. The metamorphic group forms BSE-dark rims that are variably developed but present in every sample. U-Pb dates indicate that, across the sample suite, there is nearly complete age overlap between magmatic and metamorphic titanite. We interpret chemical zoning of the titanite to record magmatic crystallization followed by hydrothermal modification of primary minerals. The age overlap suggests that solidified increments were infiltrated by fluid released by crystallization of nearby later increments. Infiltrating fluids also affected the feldspars: although apparently intact when examined optically, CL images reveal the feldspars to have been shattered, then healed by dissolution-reprecipitation. Exsolution of Ab component from K-feldspar to form albite selvages against adjacent plagioclase probably was part of the same process, as were biotite chloritization and exsolution of Ti from primary titanomagnetite to grow metamorphic titanite. Taken together, observations from titanite and major phases are consistent with fluid-mediated submagmatic re-equilibration throughout incremental assembly of the LCS.
more »
« less
- Award ID(s):
- 1853496
- PAR ID:
- 10429169
- Date Published:
- Journal Name:
- Abstracts Geological Society of America
- Volume:
- 55
- Issue:
- 4
- ISSN:
- 0435-3986
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Textural and compositional variations in titanite constrain the roles of magma mixing and hydrothermal alteration in two plutons in central Utah: the Jurassic Notch Peak and the Oligocene Little Cottonwood stocks. In the Notch Peak intrusion, magmatic titanite grains usually have oscillatory zones combined with BSE-bright sector zones, in some cases surrounding simple unzoned cores. These grains are frequently overprinted by hydrothermal titanite with low concentrations of high field strength elements (HFSE). Magmatic titanite has an average δ18O of 6.0‰ and post-magmatic titanite is 6.2‰, as analyzed by SIMS. Average Zr-in-titanite temperatures are also similar, with 718 °C for magmatic and 711 °C for hydrothermal titanite. These observations indicate simple magmatic growth, followed by hydrothermal alteration by magmatic fluids. Titanite in aplite dikes and sills has lower concentrations of all trace elements except F. Many titanite grains in the aplites have late overgrowths of high-Fe titanite. This high-Fe titanite has δ18O of 6‰ and an average Zr-in-titanite temperature of 718 °C and likely precipitated from a last flush of exsolved magmatic water enriched in Cl and Fe. Titanite in the Little Cottonwood stock typically has distinct patchy cores with rounded and embayed ilmenite inclusions. Mafic enclaves have abundant titanite that is similar in texture and δ18O (5.1‰) to titanite in the host (δ18O = 4.9‰), but it has a slightly higher average Zr-in-titanite temperature (731 vs. 717 °C). The patchy cores in the enclaves have the highest average Zr-in-titanite temperature (759 °C) and distinctive REE patterns. The textural and compositional data indicate that a hotter, more reduced, ilmenite-bearing mafic magma mixed into an oxidized felsic magma, destabilizing existing ilmenite and allowing crystallization of titanite. In the granodiorite and in the enclaves, hydrothermal growth of titanite is evidenced by distinct narrow rims as well as anhedral titanite that grew between sheets of chloritized biotite. Secondary hydrothermal titanite typically has lower concentrations of most HFSE, but is relatively enriched in F, Mg, Mo, and U, and it has higher Nb/Ta and lower Th/U ratios. Post-magmatic titanite also has strikingly different REE patterns than magmatic titanite, including the absence of pronounced Eu anomalies and lower REE abundances. These chemical features are controlled by element solubilities in aqueous fluids. In most cases, hydrothermal titanite has δ18O values similar to magmatic titanite, indicating alteration and recrystallization from exsolved magmatic fluids. The involvement of meteoric water with low δ18O is evident locally; individual spots have δ18O as low as 1.7‰ in the Little Cottonwood stock. Titanite compositions and textures provide important insights into the origins of granitic rocks and can be used to distinguish separate batches of magma, gauge the evolution of magmatic rocks, assess mixing processes, and infer compositions of mixing components. Because titanite also forms hydrothermally, it retains hints about the composition, temperature, and oxygen fugacity of the hydrothermal fluids and reveals details about titanite-forming reactions. However, the Al-in-titanite geobarometer does not yield realistic pressures of crystallization and the use of titanite as a geochronometer is compromised by the development of U-rich hydrothermal titanite.more » « less
-
Titanite U–Pb geochronology is a promising tool to date high-temperature tectonic processes, but the extent to and mechanisms by which recrystallization resets titanite U–Pb dates are poorly understood. This study combines titanite U–Pb dates, trace elements, zoning, and microstructures to directly date deformation and fluid-driven recrystallization along the Coast shear zone (BC, Canada). Twenty titanite grains from a deformed calc-silicate gneiss yield U–Pb dates that range from ~ 75 to 50 Ma. Dates between ~ 75 and 60 Ma represent metamorphic crystallization or inherited detrital cores, whereas ~ 60 and 50 Ma dates reflect localized, grain-scale processes that variably recrystallized the titanite. All the analyzed titanite grains show evidence of fluid-mediated dissolution–reprecipitation, particularly at grain rims, but lack evidence of thermally mediated volume diffusion at a metamorphic temperature of > 700 °C. The younger U–Pb dates are predominantly found in bent portions of grains or fluid-recrystallized rims. These features likely formed during ductile slip and associated fluid flow along the Coast shear zone, although it is unclear whether the dates represent 10 Myr of continuous recrystallization or incomplete resetting of the titanite U–Pb system during a punctuated metamorphic event. Correlations between dates and trace-element concentrations vary, indicating that the effects of dissolution–reprecipitation decoupled U–Pb dates from trace-element concentrations in some grains. These results demonstrate that U–Pb dates from bent titanite lattices and titanite subgrains may directly date crystal-plastic deformation, suggesting that deformation microstructures enhance fluid-mediated recrystallization, and emphasize the complexity of fluid and deformation processes within and among individual grains.more » « less
-
Titanite U–Pb geochronology is a promising tool to date high-temperature tectonic processes, but the extent to and mecha- nisms by which recrystallization resets titanite U–Pb dates are poorly understood. This study combines titanite U–Pb dates, trace elements, zoning, and microstructures to directly date deformation and fluid-driven recrystallization along the Coast shear zone (BC, Canada). Twenty titanite grains from a deformed calc-silicate gneiss yield U–Pb dates that range from ~ 75 to 50 Ma. Dates between ~ 75 and 60 Ma represent metamorphic crystallization or inherited detrital cores, whereas ~ 60 and 50 Ma dates reflect localized, grain-scale processes that variably recrystallized the titanite. All the analyzed titanite grains show evidence of fluid-mediated dissolution–reprecipitation, particularly at grain rims, but lack evidence of thermally mediated volume diffusion at a metamorphic temperature of > 700 °C. The younger U–Pb dates are predominantly found in bent portions of grains or fluid-recrystallized rims. These features likely formed during ductile slip and associated fluid flow along the Coast shear zone, although it is unclear whether the dates represent 10 Myr of continuous recrystallization or incomplete resetting of the titanite U–Pb system during a punctuated metamorphic event. Correlations between dates and trace-element concentrations vary, indicating that the effects of dissolution–reprecipitation decoupled U–Pb dates from trace-element concentrations in some grains. These results demonstrate that U–Pb dates from bent titanite lattices and titanite subgrains may directly date crystal-plastic deformation, suggesting that deformation microstructures enhance fluid-mediated recrystallization, and emphasize the complexity of fluid and deformation processes within and among individual grains.more » « less
-
Two generations of dikes and sills (earlier granodiorite, later leucogranite) have intruded quartzofeldspathic to semi-pelitic hornfels in the innermost ~200 meters of the southern contact aureole of the Alta stock. Both zircon and monazite are present in the older granodiorite intrusions, and monazite alone is present in the younger leucogranite intrusions, and in biotite-rich reaction selvages formed by hydrothermal contact metamorphism in hornfels adjacent to these dikes and sills. U-Pb dates for zircon (n=532) range from ~38 to 32 Ma, with error on individual measurements of ±1–1.5 Ma, and define a KDE peak at 34.5 Ma. These zircon dates are slightly older than, but consistent with, existing zircon data from the Alta stock (35 to 32 Ma; Stearns et al., 2020), suggesting that the construction of the Alta stock began by emplacement of these granodiorite sills and dikes. Monazite Th-Pb dates (n = 888) range from ~41 to 28 Ma with error on individual measurements of ± 1–1.5 Ma. These dates are complicated by disturbances to the U/Th-Pb systematics by common Pb (Pbc) and excess 206Pb due to 230Th. Dates >38 Ma are disturbed by significant Pbc and do not represent crystallization ages. Dates from the granodiorites range from ~38–32 Ma. In individual samples of granodiorite where the disturbance from excess 206Pb can be rigorously evaluated, the monazite data sets yield concordant 232Th-208Pb and 207Pb/206Pb-corrected dates centered at ~35 Ma, consistent with zircon dates from these same samples. Monazite dates from the leucogranites are younger (<33 Ma), consistent with cross-cutting relationships (leucogranites cross-cut granodiorites). The monazite data from the leucogranite sills and dikes do not record magmatic or hydrothermal activity after ~29 Ma, in contrast to the titanite record of hydrothermal activity to as late as ~23 Ma in the border zone of the Alta stock and its endoskarns (Stearns et al., 2020). This absence suggests that once magma injection and associated contact metamorphism in the hornfels ceased, permeability in the hornfels decreased sufficiently by ~29 Ma to prevent subsequent infiltration of significant fluxes of hydrothermal fluid into these hornfels lithologies in the aureole.more » « less
An official website of the United States government

