Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Granite textures are usually assumed to be unmodified igneous features, but titanite petrochronoloy records a progression from magmatic crystallization to fluid-mediated automorphism in the Little Cottonwood stock (LCS). The Wasatch Mountains expose a profile through the 36-25 Ma Wasatch Igneous Belt owing to 20° eastward tilt in the footwall of the Wasatch Fault. The LCS, Alta stock (AS) and their contact aureoles form an integrated magmatic-hydrothermal system that underpinned the cogenetic Keetley Volcanics (KV). The AS (~3-5 km depth) likely formed a conduit from the deeper LCS (~6-11 km) to the KV. The LCS formed in two phases: 1) ~36–33 Ma, coeval with the AS and KV, and 2) ~32–25 Ma, younger than KV and AS but at this time hydrothermal fluid infiltrated the AS to form endoskarn. LCS titanite was analyzed by LASS-ICP-MS in 16 samples of unaltered granite (s.l.) collected along transects from the roof on the east to the deepest exposures on the west and from the northern wall to the southern wall. Principal component analysis of titanite trace-element data distinguishes a magmatic group with high REE and a metamorphic group with low REE and high W, Sr, Sc, V, Cr, Fe, Al, and Pb. The metamorphic group forms BSE-dark rims that are variably developed but present in every sample. U-Pb dates indicate that, across the sample suite, there is nearly complete age overlap between magmatic and metamorphic titanite. We interpret chemical zoning of the titanite to record magmatic crystallization followed by hydrothermal modification of primary minerals. The age overlap suggests that solidified increments were infiltrated by fluid released by crystallization of nearby later increments. Infiltrating fluids also affected the feldspars: although apparently intact when examined optically, CL images reveal the feldspars to have been shattered, then healed by dissolution-reprecipitation. Exsolution of Ab component from K-feldspar to form albite selvages against adjacent plagioclase probably was part of the same process, as were biotite chloritization and exsolution of Ti from primary titanomagnetite to grow metamorphic titanite. Taken together, observations from titanite and major phases are consistent with fluid-mediated submagmatic re-equilibration throughout incremental assembly of the LCS.more » « less
-
The Tuolumne Intrusive Suite (TIS), Sierra Nevada, California, accumulated magmatic rock from 95 to 85 Ma. Ar-Ar biotite dates require that temperatures within the TIS remained above ~300°C until ~79 million years ago. The protracted thermal history resulted in five texturally and chemically distinct units that young towards the center and was recorded by chemical and isotopic re-equilibration of the minerals. Challener and Glazner (2017) demonstrated that amphibole phenocrysts from the Half Dome Granodiorite (Khd) experienced greenschist-facies metamorphism. Amphibole phenocrysts host abundant inclusions of biotite, chlorite, feldspar, titanite, epidote, and apatite, which are interpreted to have crystallized via breakdown of magnesiohornblende. Additionally, Al zoning suggests fracturing and subsequent healing of the amphibole crystals occurred at near- or subsolidus temperatures. New EPMA and LASS-ICP-MS analyses of texturally related amphibole, titanite, feldspar, and biotite from the equigranular Khd place limits on the timing of amphibole breakdown and contextualize the low-temperature re-equilibration of many of the major minerals in the rock. Most of the amphiboles analyzed contain 0.5–6 wt. % Al2O3 corresponding to actinolite compositions, while feldspar pairs record ~475 ºC apparent temperatures. Titanite grains (re)crystallized between 91–80 Ma and contain 25–825 ppm Zr, which correspond to apparent temperatures between 550–710 ºC (150 ± 50 MPa, aTiO2 = 0.5 ± 0.1). The distribution of Zr in titanites is bimodal with the majority having <200 ppm Zr. Titanites younger than 87 Ma have decreasing Zr content and titanites included within actinolite amphibole contain the lowest Zr content (25–50 ppm) and youngest dates (85–80 Ma). Melt-present crystallization of titanite began at ~91–90 Ma, followed by both near and subsolidus (re)crystallization from ~88–86, concluding with titanite growth via hornblende breakdown from 82–80 Ma. These data taken together with previous investigations provide a continuous record of the rock’s chemical evolution driven by incremental emplacement and subsequent episodic autometamorphism of the equigranular Khd, and critically, any inferences regarding magmatic processes in the TIS must first account for the metamorphic re-equilibration of the rock.more » « less
-
Two generations of dikes and sills (earlier granodiorite, later leucogranite) have intruded quartzofeldspathic to semi-pelitic hornfels in the innermost ~200 meters of the southern contact aureole of the Alta stock. Both zircon and monazite are present in the older granodiorite intrusions, and monazite alone is present in the younger leucogranite intrusions, and in biotite-rich reaction selvages formed by hydrothermal contact metamorphism in hornfels adjacent to these dikes and sills. U-Pb dates for zircon (n=532) range from ~38 to 32 Ma, with error on individual measurements of ±1–1.5 Ma, and define a KDE peak at 34.5 Ma. These zircon dates are slightly older than, but consistent with, existing zircon data from the Alta stock (35 to 32 Ma; Stearns et al., 2020), suggesting that the construction of the Alta stock began by emplacement of these granodiorite sills and dikes. Monazite Th-Pb dates (n = 888) range from ~41 to 28 Ma with error on individual measurements of ± 1–1.5 Ma. These dates are complicated by disturbances to the U/Th-Pb systematics by common Pb (Pbc) and excess 206Pb due to 230Th. Dates >38 Ma are disturbed by significant Pbc and do not represent crystallization ages. Dates from the granodiorites range from ~38–32 Ma. In individual samples of granodiorite where the disturbance from excess 206Pb can be rigorously evaluated, the monazite data sets yield concordant 232Th-208Pb and 207Pb/206Pb-corrected dates centered at ~35 Ma, consistent with zircon dates from these same samples. Monazite dates from the leucogranites are younger (<33 Ma), consistent with cross-cutting relationships (leucogranites cross-cut granodiorites). The monazite data from the leucogranite sills and dikes do not record magmatic or hydrothermal activity after ~29 Ma, in contrast to the titanite record of hydrothermal activity to as late as ~23 Ma in the border zone of the Alta stock and its endoskarns (Stearns et al., 2020). This absence suggests that once magma injection and associated contact metamorphism in the hornfels ceased, permeability in the hornfels decreased sufficiently by ~29 Ma to prevent subsequent infiltration of significant fluxes of hydrothermal fluid into these hornfels lithologies in the aureole.more » « less
-
The Wasatch Fault Zone (WFZ) is a north–south striking, west-dipping extensional fault system that bounds the eastern margin of the Basin and Range Province. Fluid inclusion thermobarometry and paleosalinity horizons require 11 km of vertical offset across the WFZ and suggest 15–20o of eastward rotation of the WFZ footwall. A series of Eocene–Oligocene intrusive and volcanic rocks, the Wasatch Intrusive Belt (WIB), crop out in the Wasatch Mountains and Snyderville Basin in a now oblique upper-crustal section where the deepest rocks are adjacent to the WFZ and the Eocene paleosurfaces are located ~35 km east of the WFZ. Paleosurfaces include Keetley and Norwood volcanic deposits (part of the WIB) and Wasatch Fm. conglomerates sitting unconformably on Mesozoic and older rocks. It was unclear how the overall eastward rotation was recorded by the paleosurfaces, both locally and regionally, and how much paleorelief existed during the Eocene–Oligocene. These basal surfaces were digitized and analyzed in ArcGIS and Matlab to determine the magnitude and pattern of rotation recorded by the paleosurfaces and to create and refine a 3D model of exhumation within the Wasatch Mountains. The maximum rotation of an individual surface is 8o, and planar best fit of all surfaces is 2o. This mismatch between the fluid inclusion and geologic data suggests that distributed deformation, yet-to-be-identified structures, and/or paleorelief likely complicated the geologic record of footwall rotation. A three-dimensional pattern of exhumation suggests north–south variation in the magnitude of exhumation which decreases away from the latitude of the WIB. East–west variation in the rotation magnitude of the paleosurfaces could possibly owe to thermal buoyancy of the exhumed rocks near the WFZ. The pattern of exhumation, surface trace of the WFZ, pattern of modern relief, and emplacement history of the WIB are consistent with increased buoyancy in the central Wasatch Mountains and proximal to the WFZ due to the prolonged elevated geothermal gradient in the vicinity of the WIB. The WIB crops out in a high relief, topographically complex area, which combined with the footwall rotation, makes an exhumation map an invaluable tool for interpreting the thermal history of the magmatic rocks and contextualizing petrochronology data from the WIB.more » « less
-
The Wasatch Mountains expose an oblique profile through the Alta and Little Cottonwood stocks (LCS) owing to 20° eastward tilt in the footwall of the Wasatch Fault. The cross section spans the upper 11 km of the crust beneath the Eocene paleosurface exposed in Park City, UT. Previous titanite and zircon U-Pb petrochronology established 10 Myr of simultaneous magmatism and hydrothermal metamorphism both in the deeper LCS and in the shallower Alta stock which likely was the conduit between the LCS and cogenetic Keetley volcanic deposits. Hydrothermal metamorphism within and surrounding the Alta stock was synchronous with and most likely driven by emplacement of LCS and migrated from within the Alta stock and contact aureole to margins of the stock suggesting an evolving permeability structure during and after the crystallization of the LCS. New titanite U-Pb petrochronology from the LCS and stock-bounding Wasatch Fault Zone indicate that 1) the LCS was constructed in two phases, an earlier ~36–34 Ma and a younger ~32–25 Ma phase, 2) the presence of both magmatic and hydrothermal titanite as recorded by trace element chemistry, and 3) a pre-Wasatch Fault ductile shear zone likely accommodated magma emplacement at crustal strain rates beginning around 32 Ma. Principal component analysis of LCS trace element data distinguishes two end-member titanite populations along the first component axis: a magmatic population with high REE and a metamorphic population with low REE and high Sr, Sc, V, Cr, Fe, Al, Pb, and particularly W. The second principal component is defined by variance in the REE interpreted to record fractionation by titanite crystallization from melt. The initial ~36–34 Ma phase of LCS construction overlaps with magmatism within the Alta stock conduit and Keetley volcanic rocks and is only found on the western, deepest portion of the LCS. Trace element chemistry of ~36–34 Ma titanites lacks the low REE, high W population suggesting that hydrothermal water released by crystallizing magma did not percolate through these rocks. Low REE, high W titanites are restricted to the structurally higher second phase of the LCS. Despite this relationship, not all samples in the second LCS phase contain the hydrothermal population, which suggests spatially complex magma emplacement and/or later hydrothermal permeability structure.more » « less
-
The U-Pb system in titanite has been shown to be reset during a variety of high-temperature processes including high-temperature deformation, but post-deformation modification and recovery of crystal-lattice strain have so far made U-Pb equilibration mechanism from deformed titanites equivocal. Microstructures, including mechanical twinning and subgrain rotation recrystallization are more likely to be preserved at low-temperatures, but the systematics of chemical equilibration have not been established for these conditions. This study identifies progressive crystallographic misorientation and deformation twins in titanite porphyroclasts from the Wasatch Fault Zone, Utah, USA. The microstructures, mapped using electron backscatter diffraction (EBSD), developed at ~11 km depth during 300–400 ºC crystal-plastic deformation within the ductile fault zone. These microstructural maps were used to guide laser ablation-split stream ICP-MS analysis: U-Pb isotopes measured in tandem with major and trace element contents. Despite the low temperature, U-Pb and trace element contents in titanite equilibrated, at least partially, during deformation. Both major and trace elements in titanite also likely partitioned with a fluid and in response to the (re)crystallization of other mineral phases in the fault zone. Chemical zoning and crystal lattice recovery suggestive of fluid-aided recrystallization are absent, and the main mechanism for this resetting may instead be an enhancement of element mobility along microstructure dislocations. These processes are interpreted to record complex open-system behavior of titanite caused by crystal-plastic deformation during the initiation of the WFZ. This presentation will summarize the comparative analysis of microstructure by EBSD and titanite chemistry by LASS-ICP-MS, and how it bears on the understanding of elemental mobility in titanite during low-temperature crystal-plastic deformation.more » « less
-
Ian Carmichael wrote of an “andesite aqueduct” that conveys vast amounts of water from the magma source region of a subduction zone to the Earth’s surface. Diverse observations indicate that subduction zone magmas contain 5 wt % or more H2O. Most of the water is released from crystallizing intrusions to play a central role in contact metamorphism and the genesis of ore deposits, but it also has important effects on the plutonic rocks themselves. Many plutons were constructed incrementally from the top down over million-year time scales. Early-formed increments are wall rocks to later increments; heat and water released as each increment crystallizes pass through older increments before exiting the pluton. The water ascends via multiple pathways. Hydrothermal veins record ascent via fracture conduits. Pipe-like conduits in Yosemite National Park, California, are located in or near aplite–pegmatite dikes, which themselves are products of hydrous late-stage magmatic liquids. Pervasive grain-boundary infiltration is recorded by fluid-mediated subsolidus modification of mineral compositions and textures. The flood of magmatic water carries a large fraction of the total thermal energy of the magma and transmits that energy much more rapidly than conduction, thus enhancing the fluctuating postemplacement thermal histories that result from incremental pluton growth. The effects of water released by subduction zone magmas are central not only to metamorphism and mineralization of surrounding rocks, but also to the petrology and the thermal history of the plutons themselves.more » « less
-
Magmatic and hydrothermal systems are intimately linked, significantly overlapping through time but persisting in different parts of a system. New preliminary U-Pb and trace element petrochronology from zircon and titanite demonstrate the protracted and episodic record of magmatic and hydrothermal processes in the Alta stock–Little Cottonwood stock plutonic and volcanic system. This system spans the upper ~11.5 km of the crust and includes a large composite pluton (e.g., Little Cottonwood stock), dike-like conduit (e.g., Alta stock), and surficial volcanic edifices (East Traverse and Park City volcanic units). A temperature–time path for the system was constructed using U-Pb and tetravalent cation thermometry to establish a record of >10 Myr of pluton emplacement, magma transport, volcanic eruption, and coeval hydrothermal circulation. Zircons from the Alta and Little Cottonwood stocks recorded a single population of apparent temperatures of ~625 ± 35 °C, while titanite apparent temperatures formed two distinct populations interpreted as magmatic (~725 ± 50 °C) and hydrothermal (~575 ± 50 °C). The spatial and temporal variations required episodic magma input, which overlapped in time with hydrothermal fluid flow in the structurally higher portions of the system. The hydrothermal system was itself episodic and migrated within the margin of the Alta stock and its aureole through time, and eventually focused at the contact of the Alta stock. First-order estimates of magma flux in this system suggest that the volcanic flux was 2–5× higher than the intrusive magma accumulation rate throughout its lifespan, consistent with intrusive volcanic systems around the world.more » « less
An official website of the United States government

Full Text Available