This dataset contains grain size records from three Integrated Ocean Drilling Program core sites (U1345, U1343, and U1339) in the Bering Sea. These records are used to determine the effectiveness of different grain size parameters as proxies for sediment transport, current strength, and primary productivity in the Bering Sea during a past warm interval (Marine Isotope Stage 11, 424-374 thousand years ago (ka)). Grain size is measured using a laser diffraction particle size analyzer (Malvern Mastersizer 3000), and is reported for bulk sediments, and for the terrigenous fraction only. The raw dataset provided by the Malvern software includes the volume % of grains in 109 bin sizes, as well as the 10th (Dx10), 50th (Dx50) and 90th (Dx90) percentiles. We also provide the volume distribution of grains in the following size fractions: clay (less than 2 micrometers (μm)); silt (2-63 μm); sand (63-2000 μm); gravel (greater than 2000 μm); ice-rafted debris (greater than 150 μm; greater than 250 μm), and sortable silt (10-63 μm). Additional grain size parameters, including mean size, sorting and skewness, are calculated in GRADISTAT.
more »
« less
Examining ocean currents off West Antarctica through particle-size analyses of a sediment core
In this study, sediments from the Pliocene warm period (3-5 million years ago) from a sediment drift deposit in the Amundsen Sea in Antarctica (drillsite U1533) were treated and analyzed for particle size distribution and sortable silt percentage. These variables help explain how fast ocean currents were moving under warmer climate scenarios. The sediments from beneath the seafloor were treated using hydrogen peroxide to break down any organic matter, followed by boiling with hydrochloric acid to break down carbonate. To remove chemicals, the sediment samples were placed into a centrifuge with 50 mL of DI water for 30 minutes, decanted, then another 30 minutes with 50 mL of DI water. After the samples were treated, they were placed into the Malvern Mastersizer 2000 to measure particle size distributions by using a laser and the resulting scatter patterns of the sediment particles. The results were graphed with depth beneath the seafloor to show the differences in sortable silt percentage over time. The results showed that the sortable silt percentage was low around the onset of the warm period, concluding that the movement of ocean currents during this time period dropped. These results were not typical, as models had predicted that warm periods would have faster ocean currents, and opens up the possibility for future research.
more »
« less
- Award ID(s):
- 2114839
- PAR ID:
- 10429196
- Date Published:
- Journal Name:
- 14th Annual GS-LSAMP/NNJ-B2B STEM Research Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Eocene‐Oligocene Transition (EOT) at ∼34 Ma marked a climatic shift from greenhouse to icehouse conditions, toward long‐lasting lower global temperatures and a continental ice sheet in the Antarctic. We report on sedimentological and inorganic geochemical results across the EOT at Ocean Drilling Program (ODP) Site 696 in the Weddell Sea, within the Antarctic limb of the Atlantic circulation. The geochemical composition of detrital, authigenic and biogenic marine sediment components, and sortable silt proxies demonstrate the impact of ice growth on high latitude water masses. Sortable silt grain size and Zr/Rb ratios attest to a period of vigorous circulation at ∼36.2–35.8 Ma, coincident with a known warm interval in the Southern Ocean. Across the EOT, detrital provenance suggests that regional ice growth in the western Weddell Sea was stepwise, first expanding in the Antarctic Peninsula, followed by parts of West Antarctica. In conjunction with regional ice growth, high uranium enrichment factors (U EF) in sediments spanning the EOT interval indicate anoxic conditions in the sediment with evidence of carbonate dissolution. Following glacial expansion and sea‐ice formation at ∼33.6 Ma, a return to oxic conditions and carbonate preservation is observed with excess barium and phosphorous indicative of an increase in productivity, and potentially carbon export. Our results highlight the important connections between ice growth and the changing properties of high‐latitude water masses at the EOT with impacts on the global ocean circulation.more » « less
-
The Eocene-Oligocene Transition (EOT) at ~34 Ma marked a climatic shift from greenhouse to icehouse conditions, towards long-lasting lower global temperatures and a continental ice sheet in the Antarctic. The relative importance of ocean gateways, pCO2, and ice growth as drivers of this transition are not fully understood. We report on sedimentological and inorganic geochemical results across the EOT at Ocean Drilling Program (ODP) Site 696 in the Weddell Sea, within the Antarctic limb of the Atlantic circulation. The geochemical composition of detrital, authigenic and biogenic marine sediment components, and sortable silt proxies demonstrate the impact of ice growth on high latitude water masses. Sortable silt grain size and Zr/Rb ratios attest to a period of vigorous circulation at ~36.2-35.8 Ma, coincident with a known warm interval in the Southern Ocean. Across the EOT, detrital provenance suggests that regional ice growth in the western Weddell Sea was stepwise, first expanding in the Antarctic Peninsula, followed by parts of West Antarctica. In conjunction with regional ice growth, high uranium enrichment factors (U EF) in sediments spanning the EOT interval indicate anoxic conditions in the sediment with evidence of carbonate dissolution. Following glacial expansion and sea-ice formation at ~33.6 Ma, a return to oxic conditions and carbonate preservation is observed with excess barium and phosphorous indicative of an increase in productivity, and potentially carbon export. Our results highlight the important connections between ice growth and the changing properties of high-latitude water masses at the EOT with impacts on the global ocean circulation.more » « less
-
Grain size is an important textural property of sediments and is widely used in paleoenvironmental studies as a means to infer changes in the sedimentary environment. However, grain size parameters are not always easy to interpret without a full understanding of the factors that influence grain size. Here, we measure grain size in sediment cores from the Bering slope and the Umnak Plateau, and review the effectiveness of different grain size parameters as proxies for sediment transport, current strength, and primary productivity, during a past warm interval (Marine Isotope Stage 11, 424-374 ka). In general, sediments in the Bering Sea are hemipelagic, making them ideal deposits for paleoenvironmental reconstructions, but there is strong evidence in the grain size distribution for contourite deposits between ~408-400 ka at the slope sites, suggesting a change in bottom current transport at this time.We show that the grain size of coarse (>150 μm) terrigenous sediment can be used effectively as a proxy for ice rafting, although it is not possible to distinguish between iceberg and sea ice rafting processes, based on grain size alone.We find that the mean grain size of bulk sediments can be used to infer changes in productivity on glacial-interglacial timescales, but the size and preservation of diatom valves also exert a control on mean grain size. Lastly, we show that the mean size of sortable silt (10-63 μm) is not a valid proxy for bottom current strength in the Bering Sea, because the input of ice-rafted silt confounds the sortable silt signal.more » « less
-
ABSTRACT Glacial marine sediment deposition varies both spatially and temporally, but nearly all studies evaluate down-core (∼ time) variations in sediment variables with little consideration for across core variability, or even the consistency of a data set over distance scales of 1 to 1000 m. Grain size and quantitative X-ray diffraction (qXRD) methods require only ≤ 1 g of sediment and thus analyses assume that the identification of coarse sand (i.e., ice-rafted debris) and sediment mineral composition are representative of the depth intervals. This assumption was tested for grain size and mineral weight % on core MD99-2317, off East Greenland. Samples were taken from two sections of the core that had contrasting coarse-sand content. A total of fourteen samples were taken consisting of seven (vertical) and two (horizontal) samples, with five replicates per sample for qXRD analyses and ∼ 10 to 20 replicates for grain size. They had an average dry weight of 10.5 ± 0.5 g and are compared with two previous sets of sediment samples that averaged 54.1 ± 18.9 g and 20.77 ± 5.8 g dry weight. The results indicated some significant differences between the pairs of samples for grain-size parameters (mean sortable silt, and median grain size) but little difference in the estimates of mineral weight percentages. Out of 84 paired mineral and grain-size comparisons only 17 were significantly different at p = < 0.05 in the post-hoc Scheffe test, all of which were linked to grain-size attributes.more » « less
An official website of the United States government

