Abstract We report the discovery of an isolated white dwarf with a spin period of 70 s. We obtained high-speed photometry of three ultramassive white dwarfs within 100 pc and discovered significant variability in one. SDSS J221141.80+113604.4 is a 1.27 M ⊙ (assuming a CO core) magnetic white dwarf that shows 2.9% brightness variations in the BG40 filter with a 70.32 ± 0.04 s period, becoming the fastest spinning isolated white dwarf currently known. A detailed model atmosphere analysis shows that it has a mixed hydrogen and helium atmosphere with a dipole field strength of B d = 15 MG. Given its large mass, fast rotation, strong magnetic field, unusual atmospheric composition, and relatively large tangential velocity for its cooling age, J2211+1136 displays all of the signatures of a double white dwarf merger remnant. Long-term monitoring of the spin evolution of J2211+1136 and other fast-spinning isolated white dwarfs opens a new discovery space for substellar and planetary mass companions around white dwarfs. In addition, the discovery of such fast rotators outside of the ZZ Ceti instability strip suggests that some should also exist within the strip. Hence, some of the monoperiodic variables found within the instability strip may be fast-spinning white dwarfs impersonating ZZ Ceti pulsators.
more »
« less
Photometric Monitoring of the ZZ Ceti Star PG 1541+651
Abstract The Kepler and K2 missions discovered multiple ZZ Ceti white dwarf pulsators that exhibit recurrent outbursts. These outbursting white dwarfs are near the red edge of the ZZ Ceti instability strip, suggesting that the phenomenon is physically related to the cessation of pulsations. We present multi-day ground-based monitoring of the poorly studied red-edge ZZ Ceti pulsator PG 1541+651. We do not detect any outbursts in our data. We do find that this pulsator has a very rich and time-variable spectrum of modes in its periodogram. The white dwarf lies in the northern continuous viewing zone of TESS; therefore, it has extensive archival light curves ripe for a detailed asteroseismic analysis of this star.
more »
« less
- PAR ID:
- 10429203
- Date Published:
- Journal Name:
- Research Notes of the AAS
- Volume:
- 7
- Issue:
- 6
- ISSN:
- 2515-5172
- Page Range / eLocation ID:
- 122
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Ultra-massive white dwarf stars are currently being discovered at a considerable rate, thanks to surveys such as the Gaia space mission. These dense and compact stellar remnants likely play a major role in Type Ia supernova explosions. It is possible to probe the interiors of ultra-massive white dwarfs through asteroseismology. In the case of the most massive white dwarfs, general relativity could affect their structure and pulsations substantially. In this work, we present results of relativistic pulsation calculations employing relativistic ultra-massive ONe-core white dwarf models with hydrogen-rich atmospheres and masses ranging from 1.29 to $$1.369 \ \mathrm{M}_{\odot }$$ with the aim of assessing the impact of general relativity on the adiabatic gravity (g)-mode period spectrum of very high mass ZZ Ceti stars. Employing the relativistic Cowling approximation for the pulsation analysis, we find that the critical buoyancy (Brunt–Väisälä) and acoustic (Lamb) frequencies are larger for the relativistic case, compared to the Newtonian case, due to the relativistic white dwarf models having smaller radii and higher gravities for a fixed stellar mass. In addition, the g-mode periods are shorter in the relativistic case than those in the Newtonian computations, with relative differences of up to ∼$50$ per cent for the highest mass models ($$1.369 \ \mathrm{M}_{\odot }$$) and for effective temperatures typical of the ZZ Ceti instability strip. Hence, the effects of general relativity on the structure, evolution, and pulsations of white dwarfs with masses larger than ∼$$1.29 \ \mathrm{M}_{\odot }$$ cannot be ignored in the asteroseismological analysis of ultra-massive ZZ Ceti stars.more » « less
-
null (Ed.)Context. We present our findings on 18 previously known ZZ Ceti stars observed by the TESS space telescope in 120 s cadence mode during the survey observation of the southern ecliptic hemisphere. Aims. We focus on the frequency analysis of the space-based observations, comparing the results with findings of previous ground-based measurements. The frequencies detected by the TESS observations can serve as inputs for future asteroseismic analyses. Methods. We performed standard pre-whitening of the data sets to derive the possible pulsation frequencies of the different targets. In some cases, we fit Lorentzians to the frequency groups that emerged as the result of short-term amplitude or phase variations that occurred during the TESS observations. Results. We detected more than 40 pulsation frequencies in seven ZZ Ceti stars observed in the 120 s cadence by TESS, with precision better than 0.1 μ Hz. We found that HE 0532−5605 may be a new outbursting ZZ Ceti. Ten targets do not show any significant pulsation frequencies in their Fourier transforms, due to a combination of their intrinsic faintness and/or crowding on the large TESS pixels. We also detected possible amplitude or phase variations during the TESS observations in some cases. Such behaviour in these targets was not previously identified from ground-based observations.more » « less
-
Abstract We present a detailed model atmosphere analysis of massive white dwarfs withM> 0.9M⊙andTeff≥ 11,000 K in the Montreal White Dwarf Database 100 pc sample and the Pan-STARRS footprint. We obtained follow-up optical spectroscopy of 109 objects with no previous spectral classification in the literature. Our spectroscopic follow-up is now complete for all 204 objects in the sample. We find 118 normal DA white dwarfs, including 45 massive DAs near the ZZ Ceti instability strip. There are no normal massive DBs: the six DBs in the sample are strongly magnetic and/or rapidly rotating. There are 20 massive DQ white dwarfs in our sample, and all are found in the crystallization sequence. In addition, 66 targets are magnetic (32% of the sample). We use magnetic white dwarf atmosphere models to constrain the field strength and geometry using offset dipole models. We also use magnetism, kinematics, and rotation measurements to constrain the fraction of merger remnant candidates among this population. The merger fraction of this sample increases from 25% for 0.9–1M⊙white dwarfs to 49% for 1.2–1.3M⊙. However, this fraction is as high as % for 1.1–1.2M⊙white dwarfs. Previous works have demonstrated that 5%–9% of high-mass white dwarfs stop cooling for ∼8 Gyr due to the22Ne distillation process, which leads to an overdensity of Q-branch stars in the solar neighborhood. We demonstrate that the overabundance of the merger remnant candidates in our sample is likely due to the same process.more » « less
-
Context. The possible existence of warm ( T eff ∼ 19 000 K) pulsating DA white dwarf (WD) stars, hotter than ZZ Ceti stars, was predicted in theoretical studies more than 30 yr ago. These studies reported the occurrence of g -mode pulsational instabilities due to the κ mechanism acting in the partial ionization zone of He below the H envelope in models of DA WDs with very thin H envelopes ( M H / M ⋆ ≲ 10 −10 ). However, to date, no pulsating warm DA WD has been discovered, despite the varied theoretical and observational evidence suggesting that a fraction of WDs should be formed with a range of very low H content. Aims. We re-examine the pulsational predictions for such WDs on the basis of new full evolutionary sequences. We analyze all the warm DAs observed by the TESS satellite up to Sector 9 in order to search for the possible pulsational signal. Methods. We computed WD evolutionary sequences of masses 0.58 and 0.80 M ⊙ with H content in the range −14.5 ≲ log( M H / M ⋆ )≲ − 10, appropriate for the study of pulsational instability of warm DA WDs. Initial models were extracted from progenitors that were evolved through very late thermal pulses on the early cooling branch. We use LPCODE stellar code into which we have incorporated a new full-implicit treatment of time-dependent element diffusion to precisely model the H–He transition zone in evolving WD models with very low H content. The nonadiabatic pulsations of our warm DA WD models were computed in the effective temperature range of 30 000 − 10 000 K, focusing on ℓ = 1 g modes with periods in the range 50 − 1500 s. Results. We find that traces of H surviving the very late thermal pulse float to the surface, eventually forming thin, growing pure H envelopes and rather extended H–He transition zones. We find that such extended transition zones inhibit the excitation of g modes due to partial ionization of He below the H envelope. Only in the cases where the H–He transition is assumed much more abrupt than predicted by diffusion do models exhibit pulsational instability. In this case, instabilities are found only in WD models with H envelopes in the range of −14.5 ≲ log( M H / M ⋆ )≲ − 10 and at effective temperatures higher than those typical for ZZ Ceti stars, in agreement with previous studies. None of the 36 warm DAs observed so far by TESS satellite are found to pulsate. Conclusions. Our study suggests that the nondetection of pulsating warm DAs, if WDs with very thin H envelopes do exist, could be attributed to the presence of a smooth and extended H–He transition zone. This could be considered as indirect proof that element diffusion indeed operates in the interior of WDs.more » « less
An official website of the United States government

