skip to main content


Title: A C 0 finite element method for the biharmonic problem with Navier boundary conditions in a polygonal domain
Abstract In this paper we study the biharmonic equation with Navier boundary conditions in a polygonal domain. In particular, we propose a method that effectively decouples the fourth-order problem as a system of Poisson equations. Our method differs from the naive mixed method that leads to two Poisson problems but only applies to convex domains; our decomposition involves a third Poisson equation to confine the solution in the correct function space, and therefore can be used in both convex and nonconvex domains. A $C^0$ finite element algorithm is in turn proposed to solve the resulting system. In addition, we derive optimal error estimates for the numerical solution on both quasi-uniform meshes and graded meshes. Numerical test results are presented to justify the theoretical findings.  more » « less
Award ID(s):
2208321
NSF-PAR ID:
10429287
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IMA Journal of Numerical Analysis
Volume:
43
Issue:
3
ISSN:
0272-4979
Page Range / eLocation ID:
1779 to 1801
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Purpose The purpose of this paper is as follows: to significantly reduce the computation time (by a factor of 1,000 and more) compared to known numerical techniques for real-world problems with complex interfaces; and to simplify the solution by using trivial unfitted Cartesian meshes (no need in complicated mesh generators for complex geometry). Design/methodology/approach This study extends the recently developed optimal local truncation error method (OLTEM) for the Poisson equation with constant coefficients to a much more general case of discontinuous coefficients that can be applied to domains with different material properties (e.g. different inclusions, multi-material structural components, etc.). This study develops OLTEM using compact 9-point and 25-point stencils that are similar to those for linear and quadratic finite elements. In contrast to finite elements and other known numerical techniques for interface problems with conformed and unfitted meshes, OLTEM with 9-point and 25-point stencils and unfitted Cartesian meshes provides the 3-rd and 11-th order of accuracy for irregular interfaces, respectively; i.e. a huge increase in accuracy by eight orders for the new 'quadratic' elements compared to known techniques at similar computational costs. There are no unknowns on interfaces between different materials; the structure of the global discrete system is the same for homogeneous and heterogeneous materials (the difference in the values of the stencil coefficients). The calculation of the unknown stencil coefficients is based on the minimization of the local truncation error of the stencil equations and yields the optimal order of accuracy of OLTEM at a given stencil width. The numerical results with irregular interfaces show that at the same number of degrees of freedom, OLTEM with the 9-points stencils is even more accurate than the 4-th order finite elements; OLTEM with the 25-points stencils is much more accurate than the 7-th order finite elements with much wider stencils and conformed meshes. Findings The significant increase in accuracy for OLTEM by one order for 'linear' elements and by 8 orders for 'quadratic' elements compared to that for known techniques. This will lead to a huge reduction in the computation time for the problems with complex irregular interfaces. The use of trivial unfitted Cartesian meshes significantly simplifies the solution and reduces the time for the data preparation (no need in complicated mesh generators for complex geometry). Originality/value It has been never seen in the literature such a huge increase in accuracy for the proposed technique compared to existing methods. Due to a high accuracy, the proposed technique will allow the direct solution of multiscale problems without the scale separation. 
    more » « less
  2. We consider an unconstrained tangential Dirichlet boundary control problem for the Stokes equations with an $ L^2 $ penalty on the boundary control.  The contribution of this paper is twofold.  First, we obtain well-posedness and regularity results for the tangential Dirichlet control problem on a convex polygonal domain.  The analysis contains new features not found in similar Dirichlet control problems for the Poisson equation; an interesting result is that the optimal control has higher local regularity on the individual edges of the domain compared to the global regularity on the entire boundary.  Second, we propose and analyze a hybridizable discontinuous Galerkin (HDG) method to approximate the solution.  For convex polygonal domains, our theoretical convergence rate for the control is optimal with respect to the global regularity on the entire boundary.  We present numerical experiments to demonstrate the performance of the HDG method. 
    more » « less
  3. In recent years, there has been significant interest in the development of finite element methods defined on meshes that include rather general polytopes and curvilinear polygons. In the present work, we provide tools necessary to employ multiply connected mesh cells in planar domains, i.e., cells with holes, in finite element computations. Our focus is efficient evaluation of the \(H^1\) semi-inner product and \(L^2\) inner product of implicitly defined finite element functions of the types arising in boundary element based finite element methods and virtual element methods. Such functions are defined as solutions of Poisson problems having a polynomial source term and continuous boundary data. We show that the integrals of interest can be reduced to integrals along the boundaries of mesh cells, thereby avoiding the need to perform any computations in cell interiors. The dominating cost of this reduction is solving a relatively small Nyström system to obtain a Dirichlet-to-Neumann map, as well as the solution of two more Nyström systems to obtain an “anti-Laplacian” of a harmonic function, which is used for computing the \(L^2\) inner product. Several numerical examples demonstrate the high-order accuracy of this approach. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: code and data available” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at both https://github.com/samreynoldsmath/PuncturedFEM and the supplementary materials (PuncturedFEM\_v0\_2\_5.zip [1.75MB]). 
    more » « less
  4. null (Ed.)
    In this paper we propose and analyze a finite difference numerical scheme for the Poisson-Nernst-Planck equation (PNP) system. To understand the energy structure of the PNP model, we make use of the Energetic Variational Approach (EnVarA), so that the PNP system could be reformulated as a non-constant mobility H − 1 H^{-1} gradient flow, with singular logarithmic energy potentials involved. To ensure the unique solvability and energy stability, the mobility function is explicitly treated, while both the logarithmic and the electric potential diffusion terms are treated implicitly, due to the convex nature of these two energy functional parts. The positivity-preserving property for both concentrations, n n and p p , is established at a theoretical level. This is based on the subtle fact that the singular nature of the logarithmic term around the value of 0 0 prevents the numerical solution reaching the singular value, so that the numerical scheme is always well-defined. In addition, an optimal rate convergence analysis is provided in this work, in which many highly non-standard estimates have to be involved, due to the nonlinear parabolic coefficients. The higher order asymptotic expansion (up to third order temporal accuracy and fourth order spatial accuracy), the rough error estimate (to establish the ℓ ∞ \ell ^\infty bound for n n and p p ), and the refined error estimate have to be carried out to accomplish such a convergence result. In our knowledge, this work will be the first to combine the following three theoretical properties for a numerical scheme for the PNP system: (i) unique solvability and positivity, (ii) energy stability, and (iii) optimal rate convergence. A few numerical results are also presented in this article, which demonstrates the robustness of the proposed numerical scheme. 
    more » « less
  5. Abstract

    The Poisson‐Boltzmann equation is a widely used model to study electrostatics in molecular solvation. Its numerical solution using a boundary integral formulation requires a mesh on the molecular surface only, yielding accurate representations of the solute, which is usually a complicated geometry. Here, we utilize adjoint‐based analyses to form two goal‐oriented error estimates that allow us to determine the contribution of each discretization element (panel) to the numerical error in the solvation free energy. This information is useful to identify high‐error panels to then refine them adaptively to find optimal surface meshes. We present results for spheres and real molecular geometries, and see that elements with large error tend to be in regions where there is a high electrostatic potential. We also find that even though both estimates predict different total errors, they have similar performance as part of an adaptive mesh refinement scheme. Our test cases suggest that the adaptive mesh refinement scheme is very effective, as we are able to reduce the error one order of magnitude by increasing the mesh size less than 20% and come out to be more efficient than uniform refinement when computing error estimations. This result sets the basis toward efficient automatic mesh refinement schemes that produce optimal meshes for solvation energy calculations.

     
    more » « less