Abstract Brassinosteroids (BR) and gibberellins (GA) regulate plant height and leaf angle in maize (Zea mays). Mutants with defects in BR or GA biosynthesis or signaling identify components of these pathways and enhance our knowledge about plant growth and development. In this study, we characterized three recessive mutant alleles of GRAS transcription factor 42 (gras42) in maize, a GRAS transcription factor gene orthologous to the DWARF AND LOW TILLERING (DLT) gene of rice (Oryza sativa). These maize mutants exhibited semi-dwarf stature, shorter and wider leaves, and more upright leaf angle. Transcriptome analysis revealed a role for GRAS42 as a determinant of BR signaling. Analysis of the expression consequences from loss of GRAS42 in the gras42-mu1021149 mutant indicated a weak loss of BR signaling in the mutant, consistent with its previously demonstrated role in BR signaling in rice. Loss of BR signaling was also evident by the enhancement of weak BR biosynthetic mutant alleles in double mutants of nana plant1-1 and gras42-mu1021149. The gras42-mu1021149 mutant had little effect on GA-regulated gene expression, suggesting that GRAS42 is not a regulator of core GA signaling genes in maize. Single-cell expression data identified gras42 expressed among cells in the G2/M phase of the cell cycle consistent with its previously demonstrated role in cell cycle gene expression in Arabidopsis (Arabidopsis thaliana). Cis-acting natural variation controlling GRAS42 transcript accumulation was identified by expression genome-wide association study (eGWAS) in maize. Our results demonstrate a conserved role for GRAS42/SCARECROW-LIKE 28 (SCL28)/DLT in BR signaling, clarify the role of this gene in GA signaling, and suggest mechanisms of tillering and leaf angle control by BR.
more »
« less
Bacterium-enabled transient gene activation by artificial transcription factors for resolving gene regulation in maize
Abstract Understanding gene regulatory networks is essential to elucidate developmental processes and environmental responses. Here, we studied regulation of a maize (Zea mays) transcription factor gene using designer transcription activator-like effectors (dTALes), which are synthetic Type III TALes of the bacterial genus Xanthomonas and serve as inducers of disease susceptibility gene transcription in host cells. The maize pathogen Xanthomonas vasicola pv. vasculorum was used to introduce 2 independent dTALes into maize cells to induced expression of the gene glossy3 (gl3), which encodes a MYB transcription factor involved in biosynthesis of cuticular wax. RNA-seq analysis of leaf samples identified, in addition to gl3, 146 genes altered in expression by the 2 dTALes. Nine of the 10 genes known to be involved in cuticular wax biosynthesis were upregulated by at least 1 of the 2 dTALes. A gene previously unknown to be associated with gl3, Zm00001d017418, which encodes aldehyde dehydrogenase, was also expressed in a dTALe-dependent manner. A chemically induced mutant and a CRISPR-Cas9 mutant of Zm00001d017418 both exhibited glossy leaf phenotypes, indicating that Zm00001d017418 is involved in biosynthesis of cuticular waxes. Bacterial protein delivery of dTALes proved to be a straightforward and practical approach for the analysis and discovery of pathway-specific genes in maize.
more »
« less
- PAR ID:
- 10429288
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- The Plant Cell
- ISSN:
- 1040-4651
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Virtually all land plants are coated in a cuticle, a waxy polyester that prevents nonstomatal water loss and is important for heat and drought tolerance. Here, we describe a likely genetic basis for a divergence in cuticular wax chemistry between Sorghum bicolor , a drought tolerant crop widely cultivated in hot climates, and its close relative Zea mays (maize). Combining chemical analyses, heterologous expression, and comparative genomics, we reveal that: 1) sorghum and maize leaf waxes are similar at the juvenile stage but, after the juvenile-to-adult transition, sorghum leaf waxes are rich in triterpenoids that are absent from maize; 2) biosynthesis of the majority of sorghum leaf triterpenoids is mediated by a gene that maize and sorghum both inherited from a common ancestor but that is only functionally maintained in sorghum; and 3) sorghum leaf triterpenoids accumulate in a spatial pattern that was previously shown to strengthen the cuticle and decrease water loss at high temperatures. These findings uncover the possibility for resurrection of a cuticular triterpenoid-synthesizing gene in maize that could create a more heat-tolerant water barrier on the plant’s leaf surfaces. They also provide a fundamental understanding of sorghum leaf waxes that will inform efforts to divert surface carbon to intracellular storage for bioenergy and bioproduct innovations.more » « less
-
Burbank, Lindsey Price (Ed.)ABSTRACT Type VI secretion system (T6SS) is a versatile, contact-dependent contractile nano-weapon in Gram-negative bacteria that fires proteinaceous effector molecules directly into prokaryotic and eukaryotic cells aiding in manipulation of the host and killing of competitors in complex niches. In plant pathogenic xanthomonads, T6SS has been demonstrated to play these diverse roles in individual pathosystems. However, the molecular network underlying the regulation of T6SS is still elusive inXanthomonasspp. To bridge this knowledge gap, we conducted anin vitrotranscriptome screen using plant apoplast mimicking minimal medium, XVM2 medium, to decipher the effect oftssMdeletion, a core gene belonging to T6SS-cluster i3*, on the regulation of gene expression inXanthomonas perforansstrain AL65. Transcriptomic data revealed that a total of 277 and 525 genes were upregulated, while 307 and 392 genes were downregulated in the mutant strain after 8 and 16 hours of growth in XVM2 medium. The transcript abundance of several genes associated with flagellum and pilus biogenesis as well as type III secretion system was downregulated in the mutant strain. Deletion oftssMof cluster-i3* resulted in upregulation of several T6SS genes belonging to cluster-i3*** and genes involved in biofilm and cell wall biogenesis. Similarly, transcription regulators likerpoN, Pho regulon,rpoE, andcsrAwere identified to be upregulated in the mutant strain. Our results suggest that T6SS modulates the expression of global regulators likecsrA,rpoN, andphoregulons, triggering a signaling cascade, and co-ordinates the expression of suite of virulence factors, stress response genes, and metabolic genes. IMPORTANCET6SS has received attention due to its significance in mediating interorganismal competition through contact-dependent release of effector molecules into prokaryotic and eukaryotic cells. Reverse-genetic studies have indicated the role of T6SS in virulence in a variety of plant pathogenic bacteria, including the one studied here,Xanthomonas. However, it is not clear whether such effect on virulence is merely due to a shift in the microbiome-mediated protection or if T6SS is involved in a complex virulence regulatory network. In this study, we conducted in vitro transcriptome profiling in minimal medium to decipher the signaling pathways regulated by tssM-i3* inX. perforansAL65. We show that TssM-i3* regulates the expression of a suite of genes associated with virulence and metabolism either directly or indirectly by altering the transcription of several regulators. These findings further expand our knowledge on the intricate molecular circuits regulated by T6SS in phytopathogenic bacteria.more » « less
-
In maize, starch mutants have facilitated characterization of key genes involved in endosperm starch biosynthesis such as large subunit of AGPase Shrunken2 ( Sh2 ) and isoamylase type DBE Sugary1 ( Su1 ). While many starch biosynthesis enzymes have been characterized, the mechanisms of certain genes (including Sugary enhancer1 ) are yet undefined, and very little is understood about the regulation of starch biosynthesis. As a model, we utilize commercially important sweet corn mutations, sh2 and su1 , to genetically perturb starch production in the endosperm. To characterize the transcriptomic response to starch mutations and identify potential regulators of this pathway, differential expression and coexpression network analysis was performed on near-isogenic lines (NILs) (wildtype, sh2 , and su1 ) in six genetic backgrounds. Lines were grown in field conditions and kernels were sampled in consecutive developmental stages (blister stage at 14 days after pollination (DAP), milk stage at 21 DAP, and dent stage at 28 DAP). Kernels were dissected to separate embryo and pericarp from the endosperm tissue and 3′ RNA-seq libraries were prepared. Mutation of the Su1 gene led to minimal changes in the endosperm transcriptome. Responses to loss of sh2 function include increased expression of sugar (SWEET) transporters and of genes for ABA signaling. Key regulators of starch biosynthesis and grain filling were identified. Notably, this includes Class II trehalose 6-phosphate synthases, Hexokinase1 , and Apetala2 transcription factor-like (AP2/ERF) transcription factors. Additionally, our results provide insight into the mechanism of Sugary enhancer1 , suggesting a potential role in regulating GA signaling via GRAS transcription factor Scarecrow-like1 .more » « less
-
Abstract Strigolactones are plant hormones with roles in a wide range of signaling and developmental processes. A yellow-striped maize mutant, (interveinalyellow)ivy, was determined to have low iron in tissues under normal growth conditions. The gene underlying theivymutation was mapped and identified asZmCCD8, a key enzyme in the biosynthesis of strigolactones. Under iron-replete conditions, comparison of the transcriptomes of wild-type plants and maizeccd8mutants revealed suppression of several iron-regulated genes inccd8. These genes are normally up-regulated during iron deficiency and include the key iron-regulated transcription factorIRO2as well as genes involved in the biosynthesis of iron chelators and transporters. External supply of synthetic strigolactone toivymutants alleviated chlorosis and returned iron-regulated gene expression to wild-type levels. In iron limited conditions, iron-regulated gene expression inccd8mutants responded normally, indicating that strigolactones are not required for response to externally imposed iron deficiency. However, they are required for basal expression of iron-regulated genes when adequate iron is available, highlighting a distinction between iron homeostasis during normal growth, and the iron deficiency response triggered by the lack of external available iron. The connection between strigolactones and iron homeostasis is not limited to maize, as Arabidopsisccd8mutants also show strong chlorosis when grown on medium with moderate levels of iron. This previously unappreciated role may have implications for the use of strigolactones in agricultural contexts.more » « less
An official website of the United States government

