skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: meltPT: A Python package for basaltic whole-rock thermobarometric analysis with application to Hawaiʻi
Quantifying the depths and temperatures from which igneous rocks are derived is an important step in understanding volcanic, magmatic and mantle processes. We present meltPT, a Python package that allows users to apply twelve published whole-rock thermobarometers within a consistent framework, as well as combine thermobarometric results and geothermal models to estimate mantle potential temperatures. We apply meltPT to basaltic rocks from mid-ocean ridges and the Hawaiian Islands. We find mid-ocean ridge basalts equilibrate between 1–2 GPa and 1275–1475 ℃, corresponding to an ambient mantle potential temperature of ~1400 ℃. We estimate that the Hawaiian plume has an excess temperature of ~150 ℃. Hawaiian melt-equilibration depths increase from 1–3 GPa to 2.5–5 GPa through each island's life cycle. Our results indicate that multiple lithologies are present within the plume, and that transient plume reconfiguration in response to changing plate velocity is a viable mechanism for generating Hawaiʻi's two geochemically distinct plume tracks.  more » « less
Award ID(s):
1925595
PAR ID:
10429374
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Volcanica
Volume:
6
Issue:
1
ISSN:
2610-3540
Page Range / eLocation ID:
63 to 76
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Oceanic island basalts are targeted for geochemical study because they provide a direct window into mantle composition and a wealth of information on the dynamics and timescales associated with Earth mixing. Previous studies mainly focused on the shield volcanic stage of oceanic islands and the more fusible, enriched mantle components that are easily distinguished in those basalts. Mantle depleted compositions are typically more difficult to resolve unless large amounts of this material participated in mantle melting (e.g., mid-ocean ridges), or unique processes allow for their compositions to be erupted undiluted, such as very small degrees of melting of a source with minimal fusible enriched components (e.g., rejuvenated basalts) or as xenoliths (e.g., abyssal peridotites). Mantle depleted components, defined here as material with low time-integrated Rb/Sr (low 87Sr/86Sr) and high time-integrated Sm/Nd and Lu/Hf ratios (high 143Nd/144Nd and 176Hf/177Hf) relative to primitive mantle, derive from a potentially very large volume reservoir (up to 80% of the mantle), and therefore need adequate characterization in order estimate the composition of the Earth and mantle-derived melts. This review focuses on mantle depleted compositions in oceanic island basalts using the Hawaiian-Emperor chain as a case study. The Hawaiian-Emperor chain is the ∼6000 km long geological record of the deeply sourced Hawaiian mantle plume, active for>81 Myr. Hawaiian volcanism evolves through four volcanic stages as a volcano traverses the Hawaiian plume: alkalic preshield, tholeiitic shield (80–90% volcano volume), alkalic postshield (∼1%), and silica undersaturated rejuvenated (< 0.1%). We report Pb-Sr-Nd-Hf isotope compositions and trace element concentrations of three rejuvenated Northwest Hawaiian Ridge basalts and compare them to an exhaustive compiled dataset of basalts from the Hawaiian Islands to the Emperor Seamounts. The Northwest Hawaiian Ridge (NWHR) includes 51 volcanoes spanning ∼42 m.y. between the bend in the Hawaiian-Emperor chain and the Hawaiian Islands where there is no high-precision isotopic data published on the rejuvenated-stage over ∼47% of the chain. NWHR and Hawaiian Island rejuvenated basalts are geochemically similar, indicating a consistent source for rejuvenated volcanism over ∼12.5 million years. In contrast, shield-stage basalts from the oldest Emperor Seamounts are more depleted in isotopic composition (i.e., higher 176Hf/177Hf, and 143Nd/144Nd with lower 87Sr/86Sr and 208Pb*/206Pb*) and trace element concentrations (i.e., much lower concentrations of highly incompatible elements) than all other depleted Hawaiian basalts younger than the bend, including NWHR rejuvenated basalts. The strongly depleted source for the oldest Emperor Seamounts (> 70 Ma) was likely related to interaction with the Kula-Pacific-Izanagi mid-ocean ridge spreading system active near the Hawaiian plume in the Late Cretaceous. In contrast, the incompatible trace element ratios of NWHR rejuvenated basalts require a distinct source in the Hawaiian mantle plume that was imprinted by ancient (> 1 Ga) partial melting, likely ancient recycled oceanic lithosphere. This review of the geochemistry of Hawaiian depleted components documents the need for the sampling of multiple distinctive depleted compositions, each preferentially melted during specific periods of Hawaiian plume activity. This suggests that the composition of depleted components can evolve during the lifetime of the mantle plume, as observed for enriched components in the Hawaiian mantle plume. Changes in the composition of depleted components are dominantly controlled by the upper mantle tectonic configurations at the time of eruption (i.e., proximity to a mid-ocean ridge), as this effect overwhelms the signal imparted by potentially sampling different lower mantle components through time. 
    more » « less
  2. SUMMARY We present models of crustal and uppermost mantle structure beneath the Hawaiian Swell and surrounding region. The models were derived from ambient-noise intermediate-period Rayleigh-wave phase velocities and from seafloor compliance that were estimated from continuous seismic and pressure recordings collected during the Hawaiian Plume-Lithosphere Undersea Mantle Experiment (PLUME). We jointly inverted these data at the locations of over 50 ocean-bottom instruments, after accounting for variations in local bathymetry and sediment properties. Our results suggest that the crystalline crust is up to 15 km thick beneath the swell and up to 23 km thick closer to the islands. Anomalously thick crust extends towards the older seamounts, downstream of Hawaii. In a second region, anomalies immediately to the south of Hawaii may be associated with the leading edge of the shallow Hawaiian magma conduit. In a third region, thickened crust to the immediate west of Hawaii may be related to Cretaceous seamounts. Low seismic velocities identified in the uppermost mantle to the northeast of Hawaii may be linked to the Molokai fracture zone and may be manifest of complex non-vertical pathways of melt through the upper lithosphere. Velocity anomalies decrease in amplitude towards the surface, suggesting that melt becomes focused into conduits at depths between 20 and 40 km that escape the resolution capabilities of our data set. 
    more » « less
  3. Volcanic hotspots are thought to be fed by hot, active upwellings from the deep mantle, with excess temperatures ( T ex ) ~100° to 300°C higher than those of mid-ocean ridges. However, T ex estimates are limited in geographical coverage and often inconsistent for individual hotspots. We infer the temperature of oceanic hotspots and ridges simultaneously by converting seismic velocity to temperature. We show that while ~45% of plume-fed hotspots are hot ( T ex ≥ 155°C), ~15% are cold ( T ex ≤ 36°C) and ~40% are not hot enough to actively upwell (50°C ≤ T ex ≤ 136°C). Hot hotspots have an extremely high helium-3/helium-4 ratio and buoyancy flux, but cold hotspots do not. The latter may originate at upper mantle depths. Alternatively, the deep plumes that feed them may be entrained and cooled by small-scale convection. 
    more » « less
  4. Abstract Halogens are primarily located within surface reservoirs of the Earth; as such they have proven to be effective tracers for the identification of subducted volatiles within the mantle. Subducting lithologies exhibit a wide variety of halogen compositions, yet the mantle maintains a fairly uniform signature, suggesting halogens may be homogenized during subduction to the mantle or during eruption. Here we present halogen (Cl, Br, and I), K, noble gas, and major and trace element data on olivines from three seamounts along the Hawaiian‐Emperor seamount chain to determine if the deep mantle source has retained evidence of halogen heterogeneities introduced through subduction. High Ni contents indicate that the Hawaiian‐Emperor mantle source contains a recycled oceanic crust component in the form of pyroxenite, which increases from the 46% in the oldest (Detroit) to 70% in the younger seamount (Koko). Detroit seamount retains mid‐ocean ridge basalts (MORB)‐like Br/Cl and I/Cl, while the Br/Cl and I/Cl of Suiko and Koko seamounts are higher than MORB and similar to altered oceanic crust and dehydrated serpentinite. Helium isotopes show a similar evolution, from MORB‐like values at Detroit seamount toward higher values at Suiko and Koko seamounts. The correlation between pyroxenite contributions, Br/Cl, I/Cl, and3He/4He indicates that subducted material has been incorporated into the primordial undegassed Hawaiian mantle plume source. The identification of recycled oceanic crustal signatures in both the trace elements and halogens indicates that subduction and dehydration of altered oceanic crust may exert control on the cycling of volatile elements to the deep mantle. 
    more » « less
  5. Abstract The rheology of oceanic lithosphere is important to our understanding of mantle dynamics and to the emergence and manifestations of plate tectonics. Data from experimental rock mechanics suggest rheology is dominated by three different deformation mechanisms including frictional sliding, low‐temperature plasticity, and high‐temperature creep, from shallow depths at relatively cold temperatures to large depths at relatively high temperatures. However, low‐temperature plasticity is poorly understood. This study further constrains low‐temperature plasticity by comparing observations of flexure at the Hawaiian Islands to predictions from 3‐D viscoelastic loading models with a realistic lithospheric rheology of frictional sliding, low‐temperature plasticity, and high‐temperature creep. We find that previously untested flow laws significantly underpredict the amplitude and overpredict the wavelength of flexure at Hawaii. These flow laws can, however, reproduce observations if they are weakened by a modest reduction (25–40%) in the plastic activation energy. Lithospheric rheology is strongly temperature dependent, and so we explore uncertainties in the thermal structure with different conductive cooling models and convection simulations of plume‐lithosphere interactions. Convection simulations show that thermal erosion from a plume only perturbs the lithospheric temperature significantly at large depths so that when it is added to the thermal structure, it produces a small increase in deflection. In addition, defining the temperature profile by the cooling plate model produces only modest weakening relative to the cooling half‐space model. Therefore, variation of the thermal structure does not appear to be a viable means of bringing laboratory‐derived flow laws for low‐temperature plasticity into agreement with geophysical field observations and modeling. 
    more » « less