Abstract The Earth's lowermost mantle is characterized by two large low shear velocity provinces (LLSVPs). The regions outside the LLSVPs have been suggested to be strongly influenced by subducted slabs and, therefore, much colder than the LLSVPs. However, localized low‐velocity seismic anomalies have been detected in the subduction‐influenced regions, whose origin remains unclear. Here, three‐dimensional geodynamic calculations are performed, and they show that linear, ridge‐like hot thermal anomalies, or thermal ridges, form in the relatively cold, downwelling regions of the lowermost mantle. Like the formation of Richter rolls due to sublithosphere small‐scale convection (SSC), the thermal ridges form as a result of SSC from the basal thermal boundary layer and they extend in directions parallel to the surrounding mantle flow. The formation of thermal ridges in subduction regions of the lowermost mantle is very sensitive to the thermal structures of the subducted materials, and thermal heterogeneities brought to the bottom of the mantle by subducting slabs greatly promote the formation of thermal ridges. The formation of thermal ridges is also facilitated by the increase of core‐mantle boundary heat flux and vigor of lowermost mantle convection. The thermal ridges may explain the low‐velocity seismic anomalies outside of the LLSVPs in the lowermost mantle. The results suggest that the relatively cold, subduction‐influenced regions of the Earth's lowermost mantle may contain localized hot anomalies.
more »
« less
On the relative temperatures of Earth’s volcanic hotspots and mid-ocean ridges
Volcanic hotspots are thought to be fed by hot, active upwellings from the deep mantle, with excess temperatures ( T ex ) ~100° to 300°C higher than those of mid-ocean ridges. However, T ex estimates are limited in geographical coverage and often inconsistent for individual hotspots. We infer the temperature of oceanic hotspots and ridges simultaneously by converting seismic velocity to temperature. We show that while ~45% of plume-fed hotspots are hot ( T ex ≥ 155°C), ~15% are cold ( T ex ≤ 36°C) and ~40% are not hot enough to actively upwell (50°C ≤ T ex ≤ 136°C). Hot hotspots have an extremely high helium-3/helium-4 ratio and buoyancy flux, but cold hotspots do not. The latter may originate at upper mantle depths. Alternatively, the deep plumes that feed them may be entrained and cooled by small-scale convection.
more »
« less
- PAR ID:
- 10319064
- Date Published:
- Journal Name:
- Science
- Volume:
- 375
- Issue:
- 6576
- ISSN:
- 0036-8075
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The spatial distribution of the geochemical domains hosting recycled crust and primordial (high‐3He/4He) reservoirs, and how they are linked to mantle convection, are poorly understood. Two continent‐sized seismic anomalies located near the core‐mantle boundary—called the Large Low Shear Wave Velocity Provinces (LLSVPs)—are potential geochemical reservoir hosts. It has been suggested that high‐3He/4He hotspots are spatially confined to the LLSVPs, hotspots sampling recycled continental crust are associated with only one of the LLSVPs, and recycled continental crust shows no relationship with latitude. We reevaluate the links between LLSVPs and isotopic signatures of hotspot lavas using improved mantle flow models including plume conduit advection. While most hotspots with the highest‐3He/4He can indeed be traced to the LLSVP interiors, at least one high‐3He/4He hotspot, Yellowstone, is located outside of the LLSVPs. This suggests high‐3He/4He is not geographically confined to the LLSVPs. Instead, a positive correlation between hotspot buoyancy flux and maximum hotspot3He/4He suggests that it is plume dynamics (i.e., buoyancy), not geography, which determines whether a dense, deep, and possibly widespread high‐3He/4He reservoir is entrained. We also show that plume‐fed EM hotspots (enriched mantle, with low‐143Nd/144Nd), signaling recycled continental crust, are spatially linked to both LLSVPs, and located primarily in the southern hemisphere. Lastly, we confirm that hotspots sampling HIMU (“high‐μ,” or high238U/204Pb) domains are not spatially limited to the LLSVPs. These findings clarify and advance our understanding of deep mantle reservoir distributions, and we discuss how continental and oceanic crust subduction is consistent with the spatial decoupling of EM and HIMU.more » « less
-
Understanding the viscosity of mantle-derived magmas is needed to model their migration mechanisms and ascent rate from the source rock to the surface. High pressure–temperature experimental data are now available on the viscosity of synthetic melts, pure carbonatitic to carbonate–silicate compositions, anhydrous basalts, dacites and rhyolites. However, the viscosity of volatile-bearing melilititic melts, among the most plausible carriers of deep carbon, has not been investigated. In this study, we experimentally determined the viscosity of synthetic liquids with ~31 and ~39 wt% SiO2, 1.60 and 1.42 wt% CO2 and 5.7 and 1 wt% H2O, respectively, at pressures from 1 to 4.7 GPa and temperatures between 1265 and 1755 °C, using the falling-sphere technique combined with in situ X-ray radiography. Our results show viscosities between 0.1044 and 2.1221 Pa·s, with a clear dependence on temperature and SiO2 content. The atomic structure of both melt compositions was also determined at high pressure and temperature, using in situ multi-angle energy-dispersive X-ray diffraction supported by ex situ microFTIR and microRaman spectroscopic measurements. Our results yield evidence that the T–T and T–O (T = Si,Al) interatomic distances of ultrabasic melts are higher than those for basaltic melts known from similar recent studies. Based on our experimental data, melilititic melts are expected to migrate at a rate ~from 2 to 57 km·yr−1 in the present-day or the Archaean mantle, respectively.more » « less
-
Abstract The Tonga‐Samoa system provides a unique tectonic context to study how a cold subducting slab interacts with a hot rising mantle plume. Here we present a 3‐D high‐resolution image of the 410‐km mantle discontinuity (the410) using seismic signals excited by deep‐focus earthquakes. The410is found to be ~30 km shallower inside the Tonga slab relative to the ambient mantle and ~20 km deeper further to the northwest under Fiji Islands. The downward deflection of the410under Fiji supports the hypothesis of a plume migration around the northern edge of the Tonga slab from Samoan hot spot to under Fiji due to fast trench rollback. The 50‐km topography difference in the410between the plume and the slab corresponds to a temperature difference of ~500 ± 100 K. The Samoan plume is inferred to be 200 ± 50 K hotter than the ambient mantle and supports a thermal origin for the plume.more » « less
-
Hans Thybo (Ed.)The continental lithospheric mantle plays an essential role in stabilizing continents over long geological time scales. Quantifying spatial variations in thermal and compositional properties of the mantle lithosphere is crucial to understanding its formation and its impact on continental stability; however, our understanding of these variations remains limited. Here we apply the Whole-rock Interpretive Seismic Toolbox For Ultramafic Lithologies (WISTFUL) to estimate thermal, compositional, and density variations in the continental mantle beneath the contiguous United States from MITPS_20, a joint body and surface wave tomographic inversion for Vp and Vs with high resolution in the shallow mantle (60–100 km). Our analysis shows lateral variations in temperature beneath the continental United States of up to 800–900 °C at 60, 80, and 100 km depth. East of the Rocky Mountains, the mantle lithosphere is generally cold (350–850 °C at 60 km), with higher temperatures (up to 1000 °C at 60 km) along the Atlantic coastal margin. By contrast, the mantle lithosphere west of the Rocky Mountains is hot (typically >1000 °C at 60 km, >1200 °C at 80–100 km), with the highest temperatures beneath Holocene volcanoes. In agreement with previous work, we find that the chemical depletion predicted by WISTFUL does not fully offset the density difference due to temperature. Extending our results using Rayleigh-Taylor instability analysis, implies the lithosphere below the United States could be undergoing oscillatory convection, in which cooling, densification, and sinking of a chemically buoyant layer alternates with reheating and rising of that layer.more » « less
An official website of the United States government

