skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effects of defect density, minority carrier lifetime, doping density, and absorber-layer thickness in CIGS and CZTSSe thin-film solar cells
Award ID(s):
2011603 2011996
PAR ID:
10429379
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Photonics for Energy
Volume:
13
Issue:
02
ISSN:
1947-7988
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Amorphous ices are usually classified as belonging to low-density or high-density amorphous ice (LDA and HDA) with densitiesρLDA ≈ 0.94 g/cm3andρHDA ≈ 1.15−1.17 g/cm3. However, a recent experiment crushing hexagonal ice (ball-milling) produced amedium-density amorphous ice (MDA,ρMDA ≈ 1.06 g/cm3) adding complexity to our understanding of amorphous ice and the phase diagram of supercooled water. Motivated by the discovery of MDA, we perform computer simulations where amorphous ices are produced by isobaric cooling and isothermal compression/decompression. Our results show that, depending on the pressure employed, isobaric cooling can generate a continuum of amorphous ices with densities that expand in between those of LDA and HDA (briefly, intermediate amorphous ices, IA). In particular, the IA generated atP ≈ 125 MPa has a remarkably similar density and average structure as MDA, implying that MDA is not unique. Using the potential energy landscape formalism, we provide an intuitive qualitative understanding of the nature of LDA, HDA, and the IA generated at different pressures. In this view, LDA and HDA occupy specific and well-separated regions of the PEL; the IA prepared atP = 125 MPa is located in the intermediate region of the PEL that separates LDA and HDA. 
    more » « less