skip to main content


Title: Cooling-driven coagulation
ABSTRACT

Astrophysical gases such as the interstellar-, circumgalactic-, or intracluster-medium are commonly multiphase, which poses the question of the structure of these systems. While there are many known processes leading to fragmentation of cold gas embedded in a (turbulent) hot medium, in this work, we focus on the reverse process: coagulation. This is often seen in wind-tunnel and shearing layer simulations, where cold gas fragments spontaneously coalesce. Using 2D and 3D hydrodynamical simulations, we find that sufficiently large (≫cstcool), perturbed cold gas clouds develop pulsations which ensure cold gas mass growth over an extended period of time (≫r/cs). This mass growth efficiently accelerates hot gas which in turn can entrain cold droplets, leading to coagulation. The attractive inverse square force between cold gas droplets has interesting parallels with gravity; the ‘monopole’ is surface area rather than mass. We develop a simple analytic model which reproduces our numerical findings.

 
more » « less
Award ID(s):
1911198
NSF-PAR ID:
10429659
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
524
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 498-511
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Astrophysical gases are commonly multiphase and highly turbulent. In this work, we investigate the survival and growth of cold gas in such a turbulent, multiphase medium using three-dimensional hydrodynamical simulations. Similar to previous work simulating coherent flow (winds), we find that cold gas survives if the cooling time of the mixed gas is shorter than the Kelvin–Helmholtz time of the cold gas clump (with some weak additional Mach number dependence). However, there are important differences. Near the survival threshold, the long-term evolution is highly stochastic, and subject to the existence of sufficiently large clumps. In a turbulent flow, the cold gas continuously fragments, enhancing its surface area. This leads to exponential mass growth, with a growth time given by the geometric mean of the cooling and the mixing time. The fragmentation process leads to a large number of small droplets which follow a scale-free dN/dm ∝ m−2 mass distribution, and dominate the area covering fraction. Thus, whilst survival depends on the presence of large ‘clouds’, these in turn produce a ‘fog’ of smaller droplets tightly coupled to the hot phase which are probed by absorption line spectroscopy. We show with the aid of Monte Carlo simulations that the simulated mass distribution emerges naturally due to the proportional mass growth and the coagulation of droplets. We discuss the implications of our results for convergence criteria of larger scale simulations and observations of the circumgalactic medium.

     
    more » « less
  2. Spurred by rich, multiwavelength observations and enabled by new simulations, ranging from cosmological to subparsec scales, the past decade has seen major theoretical progress in our understanding of the circumgalactic medium (CGM). We review key physical processes in the CGM. Our conclusions include the following: ▪ The properties of the CGM depend on a competition between gravity-driven infall and gas cooling. When cooling is slow relative to free fall, the gas is hot (roughly virial temperature), whereas the gas is cold ( T ∼ 104K) when cooling is rapid. ▪ Gas inflows and outflows play crucial roles, as does the cosmological environment. Large-scale structure collimates cold streams and provides angular momentum. Satellite galaxies contribute to the CGM through winds and gas stripping. ▪ In multiphase gas, the hot and cold phases continuously exchange mass, energy, and momentum. The interaction between turbulent mixing and radiative cooling is critical. A broad spectrum of cold gas structures, going down to subparsec scales, arises from fragmentation, coagulation, and condensation onto gas clouds. ▪ Magnetic fields, thermal conduction, and cosmic rays can substantially modify how the cold and hot phases interact, although microphysical uncertainties are presently large. Key open questions for future work include the mutual interplay between small-scale structure and large-scale dynamics, and how the CGM affects the evolution of galaxies.

     
    more » « less
  3. ABSTRACT

    The existence of fast moving, cold gas ubiquitously observed in galactic winds is theoretically puzzling, since the destruction time of cold gas is much smaller than its acceleration time. In previous work, we showed that cold gas can accelerate to wind speeds and grow in mass if the radiative cooling time of mixed gas is shorter than the cloud destruction time. Here, we study this process in much more detail, and find remarkably robust cloud acceleration and growth in a wide variety of scenarios. Radiative cooling, rather than the Kelvin–Helmholtz instability, enables self-sustaining entrainment of hot gas on to the cloud via cooling-induced pressure gradients. Indeed, growth peaks when the cloud is almost co-moving. The entrainment velocity is of order the cold gas sound speed, and growth is accompanied by cloud pulsations. Growth is also robust to the background wind and initial cloud geometry. In an adiabatic Chevalier-Clegg type wind, for instance, the mass growth rate is constant. Although growth rates are similar with magnetic fields, cloud morphology changes dramatically, with low density, magnetically supported filaments, which have a small mass fraction but dominate by volume. This could bias absorption line observations. Cloud growth from entraining and cooling hot gas can potentially account for the cold gas content of the circumgalactic medium (CGM). It can also fuel star formation in the disc as cold gas recycled in a galactic fountain accretes and cools halo gas. We speculate that galaxy-scale simulations should converge in cold gas mass once cloud column densities of N ∼ 1018 cm−2 are resolved.

     
    more » « less
  4. Abstract

    Turbulent radiative mixing layers (TRMLs) form at the interface of cold, dense gas and hot, diffuse gas in motion with each other. TRMLs are ubiquitous in and around galaxies on a variety of scales, including galactic winds and the circumgalactic medium. They host the intermediate-temperature gases that are efficient in radiative cooling, thus playing a crucial role in controlling the cold gas supply, phase structure, and spectral features of galaxies. In this work, we develop an intuitive analytic 1.5-dimensional model for TRMLs that includes a simple parameterization of the effective turbulent conductivity and viscosity and a piecewise power-law cooling curve. Our analytic model reproduces the mass flux, total cooling, and phase structure of 3D simulations of TRMLs at a fraction of the computational cost. It also reveals essential insights into the physics of TRMLs, particularly the importance of the viscous dissipation of relative kinetic energy in balancing radiative cooling as the shear Mach number approaches unity. This dissipation takes place both in the intermediate-temperature phase, which reduces the enthalpy flux from the hot phase, and in the cold phase, which enhances radiative cooling. Additionally, our model provides a fast and easy way of computing the column density and surface brightness of TRMLs, which can be directly linked to observations.

     
    more » « less
  5. Abstract

    Cosmic rays (CRs) are an important energy source in the circumgalactic medium that impact the multiphase gas structure and dynamics. We perform two-dimensional CR-magnetohydrodynamic simulations to investigate the role of CRs in accelerating multiphase gas formed via thermal instability. We compare outflows driven by CRs to those driven by a hot wind with equivalent momentum. We find that CR-driven outflow produces lower density contrast between cold and hot gas due to nonthermal pressure support, and yields a more filamentary cloud morphology. While entrainment in a hot wind can lead to cold gas increasing due to efficient cooling, CRs tend to suppress cold gas growth. The mechanism of this suppression depends on magnetic field strength, with CRs either reducing cooling or shredding the clouds by differential acceleration. Despite the suppression of cold gas growth, CRs are able to launch the cold clouds to observed velocities without rapid destruction. The dynamical interaction between CRs and multiphase gas is also sensitive to the magnetic field strength. In relatively strong fields, the CRs are more important for direct momentum input to cold gas. In relatively weak fields, the CRs impact gas primarily by heating, which modifies gas pressure.

     
    more » « less