ABSTRACT The circumgalactic medium (CGM) in $$\gtrsim 10^{12}\ \mathrm{M}_{\odot }$$ haloes is dominated by a hot phase ($$T \gtrsim 10^{6}$$ K). While many models exist for the hot gas structure, there is as yet no consensus. We compare cooling flow models, in which the hot CGM flows inwards due to radiative cooling, to the CGM of $$\sim 10^{12}{\,\rm to\,}10^{13}\ \mathrm{M}_{\odot }$$ haloes in galaxy formation simulations from the Feedback in Realistic Environments (FIRE) project at $$z\sim 0$$. The simulations include realistic cosmological evolution and feedback from stars but neglect AGN feedback. At both mass scales, CGM inflows are typically dominated by the hot phase rather than by the ‘precipitation’ of cold gas. Despite being highly idealized, we find that cooling flows describe $$\sim 10^{13}\ \mathrm{M}_{\odot }$$ haloes very well, with median agreement in the density and temperature profiles of $$\sim 20{{\ \rm per\ cent}}$$ and $$\sim 10{{\ \rm per\ cent}}$$, respectively. This indicates that stellar feedback has little impact on CGM scales in those haloes. For $$\sim 10^{12}\ \mathrm{M}_{\odot }$$ haloes, the thermodynamic profiles are also accurately reproduced in the outer CGM. For some of these lower-mass haloes, cooling flows significantly overpredict the hot gas density in the inner CGM. This could be due to multidimensional angular momentum effects not well captured by our one-dimensional cooling flow models and/or to the larger cold gas fractions in these regions. Turbulence, which contributes $$\sim 10{\!-\!}40{{\ \rm per\ cent}}$$ of the total pressure, must be included to accurately reproduce the temperature profiles. Overall, cooling flows predict entropy profiles in better agreement with the FIRE simulations than other idealized models in the literature. 
                        more » 
                        « less   
                    
                            
                            Key Physical Processes in the Circumgalactic Medium
                        
                    
    
            Spurred by rich, multiwavelength observations and enabled by new simulations, ranging from cosmological to subparsec scales, the past decade has seen major theoretical progress in our understanding of the circumgalactic medium (CGM). We review key physical processes in the CGM. Our conclusions include the following: ▪ The properties of the CGM depend on a competition between gravity-driven infall and gas cooling. When cooling is slow relative to free fall, the gas is hot (roughly virial temperature), whereas the gas is cold ( T ∼ 104K) when cooling is rapid. ▪ Gas inflows and outflows play crucial roles, as does the cosmological environment. Large-scale structure collimates cold streams and provides angular momentum. Satellite galaxies contribute to the CGM through winds and gas stripping. ▪ In multiphase gas, the hot and cold phases continuously exchange mass, energy, and momentum. The interaction between turbulent mixing and radiative cooling is critical. A broad spectrum of cold gas structures, going down to subparsec scales, arises from fragmentation, coagulation, and condensation onto gas clouds. ▪ Magnetic fields, thermal conduction, and cosmic rays can substantially modify how the cold and hot phases interact, although microphysical uncertainties are presently large. Key open questions for future work include the mutual interplay between small-scale structure and large-scale dynamics, and how the CGM affects the evolution of galaxies. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1652522
- PAR ID:
- 10475784
- Publisher / Repository:
- Annual Reviews
- Date Published:
- Journal Name:
- Annual Review of Astronomy and Astrophysics
- Volume:
- 61
- Issue:
- 1
- ISSN:
- 0066-4146
- Page Range / eLocation ID:
- 131 to 195
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT The cold ($$\sim 10^{4}\, {\rm K}$$) component of the circumgalactic medium (CGM) accounts for a significant fraction of all galactic baryons. However, using current galaxy-scale simulations to determine the origin and evolution of cold CGM gas poses a significant challenge, since it is computationally infeasible to directly simulate a galactic halo alongside the sub-pc scales that are crucial for understanding the interactions between cold CGM gas and the surrounding ‘hot’ medium. In this work, we introduce a new approach: the Cold Gas Subgrid Model (CGSM), which models unresolved cold gas as a second fluid in addition to the standard ‘normal’ gas fluid. The CGSM tracks the total mass density and bulk momentum of unresolved cold gas, deriving the properties of its unresolved cloudlets from the resolved gas phase. The interactions between the subgrid cold fluid and the resolved fluid are modelled by prescriptions from high-resolution simulations of ‘cloud crushing’ and thermal instability. Through a series of idealized tests, we demonstrate the CGSM’s ability to overcome the resolution limitations of traditional hydrodynamics simulations, successfully capturing the correct cold gas mass, its spatial distribution, and the time-scales for cloud destruction and growth. We discuss the implications of using this model in cosmological simulations to more accurately represent the microphysics that govern the galactic baryon cycle.more » « less
- 
            ABSTRACT We explore the evolution of cold streams from the cosmic web that feed galaxies through their shock-heated circumgalactic medium (CGM) at cosmic noon, $$z\simeq 1-5$$. In addition to the hydrodynamical instabilities and radiative cooling that we have incorporated in earlier works, we embed the stream and the hot CGM in the gravitational potential of the host dark matter halo, deriving equilibrium profiles for both. Self-gravity within the stream is tentatively ignored. We find that the cold streams gradually entrain a large mass of initially hot CGM gas that cools in the mixing layer and condenses onto the stream. This entrainment, combined with the acceleration down the gravitational potential well, typically triples the inward cold inflow rate into the central galaxy, compared to the original rate at the virial radius, which makes the entrained gas the dominant source of gas supply to the galaxy. The potential sources for the hot gas to be entrained are recycled enriched gas that has been previously ejected from the galaxy, and fresh virial-shock-heated gas that has accumulated in the CGM. This can naturally elevate the star formation rate in the galaxy by a factor of $$\sim 3$$ compared to the gas accretion rate onto the halo, thus explaining the otherwise puzzling observed excess of star formation at cosmic noon. When accounting for self-shielding of dense gas from the ultraviolet background, we find that the energy radiated from the streams, originating predominantly from the cooling of the entrained gas, is consistent with observed Lyman-$$\alpha$$ blobs around galaxies.more » « less
- 
            Atomic hydrogen (Hi) is a critical stepping stone in the gas evolution cycle of the interstellar medium (ISM) of the Milky Way. Hi traces both the cold, premolecular state before star formation and the warm, diffuse ISM before and after star formation. This review describes new, sensitive Hi absorption and emission surveys, which, together with high angular and spectral resolution Hi emission data, have revealed the physical properties of Hi, its structure, and its association with magnetic fields. We give an overview of the Hi phases and discuss how Hi properties depend on the environment and what its structure can tell us about feedback in the ISM. Key findings include the following: ▪ The mass fraction of the cold neutral medium is ≲40% on average, increasing with A V due to the increase of mean gas density. ▪ The cold disk extends to at least R ∼ 25 kpc. ▪ Approximately 40% of the Hi is warm, with structural characteristics that derive from feedback events. ▪ Cold Hi is highly filamentary, whereas warm Hi is more smoothly distributed. We summarize future observational and simulation opportunities that can be used to unravel the 3D structure of the atomic ISM and the effects of heating and cooling on Hi properties.more » « less
- 
            null (Ed.)ABSTRACT Pressure balance plays a central role in models of the interstellar medium (ISM), but whether and how pressure balance is realized in a realistic multiphase ISM is not yet well understood. We address this question by using a set of FIRE-2 cosmological zoom-in simulations of Milky Way-mass disc galaxies, in which a multiphase ISM is self-consistently shaped by gravity, cooling, and stellar feedback. We analyse how gravity determines the vertical pressure profile as well as how the total ISM pressure is partitioned between different phases and components (thermal, dispersion/turbulence, and bulk flows). We show that, on average and consistent with previous more idealized simulations, the total ISM pressure balances the weight of the overlying gas. Deviations from vertical pressure balance increase with increasing galactocentric radius and with decreasing averaging scale. The different phases are in rough total pressure equilibrium with one another, but with large deviations from thermal pressure equilibrium owing to kinetic support in the cold and warm phases, which dominate the total pressure near the mid-plane. Bulk flows (e.g. inflows and fountains) are important at a few disc scale heights, while thermal pressure from hot gas dominates at larger heights. Overall, the total mid-plane pressure is well-predicted by the weight of the disc gas and we show that it also scales linearly with the star formation rate surface density (ΣSFR). These results support the notion that the Kennicutt–Schmidt relation arises because ΣSFR and the gas surface density (Σg) are connected via the ISM mid-plane pressure.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    