ABSTRACT We explore the evolution of cold streams from the cosmic web that feed galaxies through their shock-heated circumgalactic medium (CGM) at cosmic noon, $$z\simeq 1-5$$. In addition to the hydrodynamical instabilities and radiative cooling that we have incorporated in earlier works, we embed the stream and the hot CGM in the gravitational potential of the host dark matter halo, deriving equilibrium profiles for both. Self-gravity within the stream is tentatively ignored. We find that the cold streams gradually entrain a large mass of initially hot CGM gas that cools in the mixing layer and condenses onto the stream. This entrainment, combined with the acceleration down the gravitational potential well, typically triples the inward cold inflow rate into the central galaxy, compared to the original rate at the virial radius, which makes the entrained gas the dominant source of gas supply to the galaxy. The potential sources for the hot gas to be entrained are recycled enriched gas that has been previously ejected from the galaxy, and fresh virial-shock-heated gas that has accumulated in the CGM. This can naturally elevate the star formation rate in the galaxy by a factor of $$\sim 3$$ compared to the gas accretion rate onto the halo, thus explaining the otherwise puzzling observed excess of star formation at cosmic noon. When accounting for self-shielding of dense gas from the ultraviolet background, we find that the energy radiated from the streams, originating predominantly from the cooling of the entrained gas, is consistent with observed Lyman-$$\alpha$$ blobs around galaxies.
more »
« less
Key Physical Processes in the Circumgalactic Medium
Spurred by rich, multiwavelength observations and enabled by new simulations, ranging from cosmological to subparsec scales, the past decade has seen major theoretical progress in our understanding of the circumgalactic medium (CGM). We review key physical processes in the CGM. Our conclusions include the following: ▪ The properties of the CGM depend on a competition between gravity-driven infall and gas cooling. When cooling is slow relative to free fall, the gas is hot (roughly virial temperature), whereas the gas is cold ( T ∼ 104K) when cooling is rapid. ▪ Gas inflows and outflows play crucial roles, as does the cosmological environment. Large-scale structure collimates cold streams and provides angular momentum. Satellite galaxies contribute to the CGM through winds and gas stripping. ▪ In multiphase gas, the hot and cold phases continuously exchange mass, energy, and momentum. The interaction between turbulent mixing and radiative cooling is critical. A broad spectrum of cold gas structures, going down to subparsec scales, arises from fragmentation, coagulation, and condensation onto gas clouds. ▪ Magnetic fields, thermal conduction, and cosmic rays can substantially modify how the cold and hot phases interact, although microphysical uncertainties are presently large. Key open questions for future work include the mutual interplay between small-scale structure and large-scale dynamics, and how the CGM affects the evolution of galaxies.
more »
« less
- Award ID(s):
- 1652522
- PAR ID:
- 10475784
- Publisher / Repository:
- Annual Reviews
- Date Published:
- Journal Name:
- Annual Review of Astronomy and Astrophysics
- Volume:
- 61
- Issue:
- 1
- ISSN:
- 0066-4146
- Page Range / eLocation ID:
- 131 to 195
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Atomic hydrogen (Hi) is a critical stepping stone in the gas evolution cycle of the interstellar medium (ISM) of the Milky Way. Hi traces both the cold, premolecular state before star formation and the warm, diffuse ISM before and after star formation. This review describes new, sensitive Hi absorption and emission surveys, which, together with high angular and spectral resolution Hi emission data, have revealed the physical properties of Hi, its structure, and its association with magnetic fields. We give an overview of the Hi phases and discuss how Hi properties depend on the environment and what its structure can tell us about feedback in the ISM. Key findings include the following: ▪ The mass fraction of the cold neutral medium is ≲40% on average, increasing with A V due to the increase of mean gas density. ▪ The cold disk extends to at least R ∼ 25 kpc. ▪ Approximately 40% of the Hi is warm, with structural characteristics that derive from feedback events. ▪ Cold Hi is highly filamentary, whereas warm Hi is more smoothly distributed. We summarize future observational and simulation opportunities that can be used to unravel the 3D structure of the atomic ISM and the effects of heating and cooling on Hi properties.more » « less
-
null (Ed.)ABSTRACT Pressure balance plays a central role in models of the interstellar medium (ISM), but whether and how pressure balance is realized in a realistic multiphase ISM is not yet well understood. We address this question by using a set of FIRE-2 cosmological zoom-in simulations of Milky Way-mass disc galaxies, in which a multiphase ISM is self-consistently shaped by gravity, cooling, and stellar feedback. We analyse how gravity determines the vertical pressure profile as well as how the total ISM pressure is partitioned between different phases and components (thermal, dispersion/turbulence, and bulk flows). We show that, on average and consistent with previous more idealized simulations, the total ISM pressure balances the weight of the overlying gas. Deviations from vertical pressure balance increase with increasing galactocentric radius and with decreasing averaging scale. The different phases are in rough total pressure equilibrium with one another, but with large deviations from thermal pressure equilibrium owing to kinetic support in the cold and warm phases, which dominate the total pressure near the mid-plane. Bulk flows (e.g. inflows and fountains) are important at a few disc scale heights, while thermal pressure from hot gas dominates at larger heights. Overall, the total mid-plane pressure is well-predicted by the weight of the disc gas and we show that it also scales linearly with the star formation rate surface density (ΣSFR). These results support the notion that the Kennicutt–Schmidt relation arises because ΣSFR and the gas surface density (Σg) are connected via the ISM mid-plane pressure.more » « less
-
ABSTRACT Black hole feedback plays a central role in shaping the circumgalactic medium (CGM) of elliptical galaxies. We systematically study the impact of plasma physics on the evolution of ellipticals by performing three-dimensional non-ideal magnetohydrodynamic simulations of the interactions of active galactic nucleus (AGN) jets with the CGM including magnetic fields, and cosmic rays (CRs) and their transport processes. We find that the physics of feedback operating on large galactic scales depends very sensitively on plasma physics operating on small scales. Specifically, we demonstrate that (i) in the purely hydrodynamical case, the AGN jets initially maintain the atmospheres in global thermal balance. However, local thermal instability generically leads to the formation of massive cold discs in the vicinity of the central black hole in disagreement with observations; (ii) including weak magnetic fields prevents the formation of the discs because local B-field amplification in the precipitating cold gas leads to strong magnetic breaking, which quickly extracts angular momentum from the accreting clouds. The magnetic fields transform the cold clouds into narrow filaments that do not fall ballistically; (iii) when plasma composition in the AGN jets is dominated by CRs, and CR transport is neglected, the atmospheres exhibit cooling catastrophes due to inefficient heat transfer from the AGN to CGM despite Coulomb/hadronic CR losses being present; (iv) including CR streaming and heating restores agreement with the observations, i.e. cooling catastrophes are prevented and massive cold central discs do not form. The AGN power is reduced as its energy is utilized efficiently.more » « less
-
Abstract The circumgalactic medium (CGM) is often assumed to exist in or near hydrostatic equilibrium, with the regulation of accretion and the effects of feedback treated as perturbations to a stable balance between gravity and thermal pressure. We investigate global hydrostatic equilibrium in the CGM using four highly resolvedL*galaxies from the Figuring Out Gas & Galaxies in Enzo (FOGGIE) project. The FOGGIE simulations were specifically targeted at fine spatial and mass resolution in the CGM (Δx≲ 1 kpch−1andM≃ 200M⊙). We develop a new analysis framework that calculates the forces provided by thermal pressure gradients, turbulent pressure gradients, ram pressure gradients of large-scale radial bulk flows, centrifugal rotation, and gravity acting on the gas in the CGM. Thermal and turbulent pressure gradients vary strongly on scales of ≲5 kpc throughout the CGM. Thermal pressure gradients provide the main supporting force only beyond ∼0.25R200, or ∼50 kpc atz= 0. Within ∼0.25R200, turbulent pressure gradients and rotational support provide stronger forces than thermal pressure. More generally, we find that global equilibrium models are neither appropriate nor predictive for the small scales probed by absorption line observations of the CGM. Local conditions generally cannot be derived by assuming a global equilibrium, but an emergent global equilibrium balancing radially inward and outward forces is obtained when averaging over the nonequilibrium local conditions on large scales in space and time. Approximate hydrostatic equilibrium holds only at large distances from galaxies, even when averaging out small-scale variations.more » « less