Abstract Diatoms are important components of the marine food web and one of the most species‐rich groups of phytoplankton. The diversity and composition of diatoms in eutrophic nearshore habitats have been well documented due to the outsized influence of diatoms on coastal ecosystem functioning. In contrast, patterns of both diatom diversity and community composition in offshore oligotrophic regions where diatom biomass is low have been poorly resolved. To compare the diatom diversity and community composition in oligotrophic and eutrophic waters, diatom communities were sampled along a 1,250 km transect from the oligotrophic Sargasso Sea to the coastal waters of the northeast US shelf. Diatom community composition was determined by amplifying and sequencing the 18S rDNA V4 region. Of the 301 amplicon sequence variants (ASVs) identified along the transect, the majority (70%) were sampled exclusively from oligotrophic waters of the Gulf Stream and Sargasso Sea and included the generaBacteriastrum,Haslea,Hemiaulus,Pseudo‐nitzschia, andNitzschia. Diatom ASV richness did not vary along the transect, indicating that the oligotrophic Sargasso Sea and Gulf Stream are occupied by a diverse diatom community. Although ASV richness was similar between oligotrophic and coastal waters, diatom community composition in these regions differed significantly and was correlated with temperature and phosphate, two environmental variables known to influence diatom metabolism and geographic distribution. In sum, oligotrophic waters of the western North Atlantic harbor diverse diatom assemblages that are distinct from coastal regions, and these open ocean diatoms warrant additional study, as they may play critical roles in oligotrophic ecosystems.
more »
« less
Multi‐year time series reveals temporally synchronous diatom communities with annual frequency of recurrence in a temperate estuary
Abstract Diatoms are among the most abundant phytoplankton that inhabit coastal ecosystems, forming large blooms that fuel coastal food webs. Although diatoms are often large and morphologically distinct, many are small or morphologically cryptic making it difficult to understand the temporal dynamics of whole diatom communities and the environmental factors that drive them. Here, we investigated diatom diversity and its environmental correlates using 6 yr of monthly surface water samples from the Narragansett Bay Plankton Time Series to investigate the seasonal and annual variability of diatom species occurrence. High‐throughput amplicon sequencing of filtered biomass yielded 658 diatom amplicon sequence variants (ASVs), of which 347 were identified to species. Of the 49 diatom genera in the sequencing dataset, 33% had never been observed in the time series using microscopy (1959–2014). We observed a weak quadratic relationship between ASV richness and chlorophyll‐aconcentrations, suggesting that richness decreases during blooms. There was a significant difference in diatom ASV richness by season and we identified distinct assemblages associated with different seasons. These assemblages were remarkably synchronous, exhibiting a sinewave‐like pattern, over 6 yr with an annual periodicity that correlated significantly with seasonal changes in temperature, light, and dissolved inorganic nitrogen. The annual cycle of diatom assemblages suggests stability in a key component of the estuarine food web known to influence ecosystem resilience and function. Deviations from the annual cycle of recurrence could be used to distinguish between changes in community structure driven by annual fluctuations in the environment and those driven by climate‐change stressors.
more »
« less
- Award ID(s):
- 1655686
- PAR ID:
- 10429666
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Limnology and Oceanography
- Volume:
- 68
- Issue:
- 9
- ISSN:
- 0024-3590
- Page Range / eLocation ID:
- p. 1982-1994
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Bernstein, Hans C (Ed.)ABSTRACT The continental shelf of the Western Antarctic Peninsula (WAP) is a highly variable system characterized by strong cross-shelf gradients, rapid regional change, and large blooms of phytoplankton, notably diatoms. Rapid environmental changes coincide with shifts in plankton community composition and productivity, food web dynamics, and biogeochemistry. Despite the progress in identifying important environmental factors influencing plankton community composition in the WAP, the molecular basis for their survival in this oceanic region, as well as variations in species abundance, metabolism, and distribution, remains largely unresolved. Across a gradient of physicochemical parameters, we analyzed the metabolic profiles of phytoplankton as assessed through metatranscriptomic sequencing. Distinct phytoplankton communities and metabolisms closely mirrored the strong gradients in oceanographic parameters that existed from coastal to offshore regions. Diatoms were abundant in coastal, southern regions, where colder and fresher waters were conducive to a bloom of the centric diatom,Actinocyclus. Members of this genus invested heavily in growth and energy production; carbohydrate, amino acid, and nucleotide biosynthesis pathways; and coping with oxidative stress, resulting in uniquely expressed metabolic profiles compared to other diatoms. We observed strong molecular evidence for iron limitation in shelf and slope regions of the WAP, where diatoms in these regions employed iron-starvation induced proteins, a geranylgeranyl reductase, aquaporins, and urease, among other strategies, while limiting the use of iron-containing proteins. The metatranscriptomic survey performed here reveals functional differences in diatom communities and provides further insight into the environmental factors influencing the growth of diatoms and their predicted response to changes in ocean conditions. IMPORTANCEIn the Southern Ocean, phytoplankton must cope with harsh environmental conditions such as low light and growth-limiting concentrations of the micronutrient iron. Using metratranscriptomics, we assessed the influence of oceanographic variables on the diversity of the phytoplankton community composition and on the metabolic strategies of diatoms along the Western Antarctic Peninsula, a region undergoing rapid climate change. We found that cross-shelf differences in oceanographic parameters such as temperature and variable nutrient concentrations account for most of the differences in phytoplankton community composition and metabolism. We opportunistically characterized the metabolic underpinnings of a large bloom of the centric diatomActinocyclusin coastal waters of the WAP. Our results indicate that physicochemical differences from onshore to offshore are stronger than between southern and northern regions of the WAP; however, these trends could change in the future, resulting in poleward shifts in functional differences in diatom communities and phytoplankton blooms.more » « less
-
Huber, Julie A. (Ed.)ABSTRACT Wind-driven upwelling followed by relaxation results in cycles of cold nutrient-rich water fueling intense phytoplankton blooms followed by nutrient depletion, bloom decline, and sinking of cells. Surviving cells at depth can then be vertically transported back to the surface with upwelled waters to seed another bloom. As a result of these cycles, phytoplankton communities in upwelling regions are transported through a wide range of light and nutrient conditions. Diatoms appear to be well suited for these cycles, but their responses to them remain understudied. To investigate the bases for diatoms’ ecological success in upwelling environments, we employed laboratory simulations of a complete upwelling cycle with a common diatom, Chaetoceros decipiens , and coccolithophore, Emiliania huxleyi . We show that while both organisms exhibited physiological and transcriptomic plasticity, the diatom displayed a distinct response enabling it to rapidly shift-up growth rates and nitrate assimilation when returned to light and available nutrients following dark nutrient-deplete conditions. As observed in natural diatom communities, C. decipiens highly expresses before upwelling, or frontloads, key transcriptional and nitrate assimilation genes, coordinating its rapid response to upwelling conditions. Low-iron simulations showed that C. decipiens is capable of maintaining this response when iron is limiting to growth, whereas E. huxleyi is not. Differential expression between iron treatments further revealed specific genes used by each organism under low iron availability. Overall, these results highlight the responses of two dominant phytoplankton groups to upwelling cycles, providing insight into the mechanisms fueling diatom blooms during upwelling events. IMPORTANCE Coastal upwelling regions are among the most biologically productive ecosystems. During upwelling events, nutrient-rich water is delivered from depth resulting in intense phytoplankton blooms typically dominated by diatoms. Along with nutrients, phytoplankton may also be transported from depth to seed these blooms then return to depth as upwelling subsides creating a cycle with varied conditions. To investigate diatoms’ success in upwelling regions, we compare the responses of a common diatom and coccolithophore throughout simulated upwelling cycles under iron-replete and iron-limiting conditions. The diatom exhibited a distinct rapid response to upwelling irrespective of iron status, whereas the coccolithophore’s response was either delayed or suppressed depending on iron availability. Concurrently, the diatom highly expresses, or frontloads, nitrate assimilation genes prior to upwelling, potentially enabling this rapid response. These results provide insight into the molecular mechanisms underlying diatom blooms and ecological success in upwelling regions.more » « less
-
Diatoms generate nearly half of marine primary production and are comprised of a diverse array of species that are often morphologically cryptic or difficult to identify using light microscopy. Here, species composition and realized thermal niches of species in the diatom genus Thalassiosira were examined at the site of the Narragansett Bay (NBay) Long-Term Plankton Time Series using a combination of light microscopy (LM), high-throughput sequencing (HTS) of the 18S rDNA V4 region and historical records. Thalassiosira species were identified over 6 years using a combination of LM and DNA sequences. Sixteen Thalassiosira taxa were identified using HTS: nine were newly identified in NBay. Several newly identified species have small cell diameters and are difficult to identify using LM. However, they appeared frequently and thus may play a significant ecological role in NBay, particularly since their realized niches suggest they are eurythermal and able to tolerate the >25 °C temperature range of NBay. Four distinct species assemblages that grouped by season were best explained by surface water temperature. When compared to historical records, we found that the cold-water species Thalassiosira nordenskioeldii has decreased in persistence over time, suggesting that increasing surface water temperature has influenced the ecology of phytoplankton in NBay.more » « less
-
The growth of diatoms in the Southern Ocean, especially the region surrounding the West Antarctic Peninsula, is frequently constrained by low dissolved iron and other trace metal concentrations. This challenge may be overcome by mutualisms between diatoms and co-occurring associated bacteria, in which diatoms produce organic carbon as a substrate for bacterial growth, and bacteria produce siderophores, metal-binding ligands that can supply diatoms with metals upon uptake as well as other useful secondary compounds for diatom growth like vitamins. To examine the relationships between diatoms and bacteria in the plankton (diatom) size class (> 3 µm), we sampled both bacterial and diatom community composition with accompanying environmental metadata across a naturally occurring concentration gradient of macronutrients, trace metals and siderophores at 21 stations near the West Antarctic Peninsula (WAP). Offshore Drake Passage stations had low dissolved iron (0.33 ± 0.15 nM), while the stations closer to the continental margin had higher dissolved iron (5.05 ± 1.83 nM). A similar geographic pattern was observed for macronutrients and most other trace metals measured, but there was not a clear inshore-offshore gradient in siderophore concentrations. The diatom and bacteria assemblages, determined using 18S and 16S rDNA sequencing respectively, were similar by location sampled, and variance in both assemblages was driven in part by concentrations of soluble reactive phosphorous, dissolved manganese, and dissolved copper, which were all higher near the continent. Some of the most common diatom sequence types observed were Thalassiosira and Fragilariopsis , and bacteria in the plankton size fraction were most commonly Bacteroidetes and Gammaproteobacteria. Network analysis showed positive associations between diatoms and bacteria, indicating possible in situ mutualisms through strategies such as siderophore and vitamin biosynthesis and exchange. This work furthers the understanding of how naturally occurring gradients of metals and nutrients influence diatom-bacteria interactions. Our data suggest that distinct groups of diatoms and associated bacteria are interacting under different trace metal regimes in the WAP, and that diatoms with different bacterial partners may have different modes of biologically supplied trace metals.more » « less
An official website of the United States government
