skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dwarf Galaxy Formation with and without Dark Matter–Baryon Streaming Velocities
Abstract We study how supersonic streaming velocities of baryons relative to dark matter—a large-scale effect imprinted at recombination and coherent over ∼3 Mpc scales—affect the formation of dwarf galaxies at z ≳ 5. We perform cosmological hydrodynamic simulations, including and excluding streaming velocities, in regions centered on halos with M vir ( z = 0) ≈ 10 10 M ⊙ ; the simulations are part of the Feedback In Realistic Environments (FIRE) project and run with FIRE-3 physics. Our simulations comprise many thousands of systems with halo masses between M vir = 2 × 10 5 M ⊙ and 2 × 10 9 M ⊙ in the redshift range z = 20–5. A few hundred of these galaxies form stars and have stellar masses ranging from 100 to 10 7 M ⊙ . While star formation is globally delayed by approximately 50 Myr in the streaming relative to nonstreaming simulations and the number of luminous galaxies is correspondingly suppressed at high redshift in the streaming runs, these effects decay with time. By z = 5, the properties of the simulated galaxies are nearly identical in the streaming versus nonstreaming runs, indicating that any effects of streaming velocities on the properties of galaxies at the mass scale of classical dwarfs and larger do not persist to z = 0.  more » « less
Award ID(s):
2108962 1910346 1752913 2107772
PAR ID:
10429700
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
950
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
20
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Recent observations indicate that galactic outflows are ubiquitous in high-redshift (high-z) galaxies, including normal star-forming galaxies, quasar hosts, and dusty star-forming galaxies (DSFGs). However, the impact of outflows on the evolution of their hosts is still an open question. Here, we analyse the star-formation histories and galactic outflow properties of galaxies in massive haloes ($$10^{12}\, {\rm M}_{\odot }\ \lt\ M_{\rm vir}\ \lt\ 5\times 10^{12}\, {\rm M}_{\odot }$$) at z ≳ 5.5 in three zoom-in cosmological simulations from the MassiveFIRE suite, as part of the Feedback In Realistic Environments (FIRE) project. The simulations were run with the FIRE-2 model, which does not include feedback from active galactic nuclei. The simulated galaxies resemble z > 4 DSFGs, with star-formation rates of $$\sim\!{1000}\ {\rm M}_{\odot }\, \rm yr^{-1}$$ and molecular gas masses of Mmol ∼ 1010 M⊙. However, the simulated galaxies are characterized by higher circular velocities than those observed in high-z DSFGs. The mass loading factors from stellar feedback are of the order of ∼0.1, implying that stellar feedback is inefficient in driving galactic outflows and gas is consumed by star formation on much shorter time-scales than it is expelled from the interstellar medium. We also find that stellar feedback is highly inefficient in self-regulating star formation in this regime, with an average integrated star formation efficiency (SFE) per dynamical time of 30 per cent. Finally, compared with FIRE-2 galaxies hosted in similarly massive haloes at lower redshift, we find lower mass loading factors and higher SFEs in the high-z sample. We argue that both effects originate from the higher total and gas surface densities that characterize high-z massive systems. 
    more » « less
  2. ABSTRACT We perform cosmological hydrodynamical simulations to study the formation of proto-globular cluster candidates in progenitors of present-day dwarf galaxies $$(M_{\rm vir} \approx 10^{10}\, {\rm M}_\odot$$ at z = 0) as part of the ‘Feedback in Realistic Environment’ (FIRE) project. Compact (r1/2 < 30 pc), relatively massive (0.5 × 105 ≲ M⋆/M⊙ ≲ 5 × 105), self-bound stellar clusters form at 11 ≳ z ≳ 5 in progenitors with $$M_{\rm vir} \approx 10^9\, \mathrm{M}_{\odot }$$. Cluster formation is triggered when at least $$10^7\, \mathrm{M}_{\odot }$$ of dense, turbulent gas reaches $$\Sigma _{\rm gas} \approx 10^4\, {\rm M}_\odot \, {\rm pc}^{-2}$$ as a result of the compressive effects of supernova feedback or from cloud–cloud collisions. The clusters can survive for $$2-3\, {\rm Gyr}$$; absent numerical effects, they could possibly survive substantially longer, perhaps to z = 0. The longest lived clusters are those that form at significant distance – several hundreds of pc – from their host galaxy. We therefore predict that globular clusters forming in progenitors of present-day dwarf galaxies will be offset from any pre-existing stars within their host dark matter haloes as opposed to deeply embedded within a well-defined galaxy. Properties of the nascent clusters are consistent with observations of some of the faintest and most compact high-redshift sources in Hubble Space Telescope lensing fields and are at the edge of what will be detectable as point sources in deep imaging of non-lensed fields with JWST. By contrast, the star clusters’ host galaxies will remain undetectable. 
    more » « less
  3. ABSTRACT Atomic hydrogen (H i) serves a crucial role in connecting galactic-scale properties such as star formation with the large-scale structure of the Universe. While recent numerical simulations have successfully matched the observed covering fraction of H i near Lyman Break Galaxies (LBGs) and in the foreground of luminous quasars at redshifts $$z \lesssim 3$$, the low-mass end remains as-of-yet unexplored in observational and computational surveys. We employ a cosmological, hydrodynamical simulation (FIREbox) supplemented with zoom-in simulations (MassiveFIRE) from the Feedback In Realistic Environments (FIRE) project to investigate the H i covering fraction of Lyman Limit Systems ($$N_{{\text{H}}\, \rm{{\small I}}} \gtrsim 10^{17.2}$$ cm$$^{-2}$$) across a wide range of redshifts ($z=0-6$) and halo masses ($$10^8-10^{13} \, \,\mathrm{ M}_{\odot }$$ at $z=0$, $$10^8-10^{11}\, \,\mathrm{ M}_{\odot }$$ at $z=6$) in the absence of feedback from active galactic nuclei. We find that the covering fraction inside haloes exhibits a strong increase with redshift, with only a weak dependence on halo mass for higher mass haloes. For massive haloes ($$M_{\mathrm{vir}} \sim 10^{11}-10^{12} \,\mathrm{ M}_{\odot }$$), the radial profiles showcase scale-invariance and remain independent of mass. The radial dependence is well captured by a fitting function. The covering fractions in our simulations are in good agreement with measurements of the covering fraction in LBGs. Our comprehensive analysis unveils a complex dependence with redshift and halo mass for haloes with $$M_{\mathrm{vir}} \lesssim 10^{10} \,\mathrm{ M}_{\odot }$$ that future observations aim to constrain, providing key insights into the physics of structure formation and gas assembly. 
    more » « less
  4. Abstract We describe a public data release of the FIRE-2 cosmological zoom-in simulations of galaxy formation (available at http://flathub.flatironinstitute.org/fire ) from the Feedback In Realistic Environments (FIRE) project. FIRE-2 simulations achieve parsec-scale resolution to explicitly model the multiphase interstellar medium while implementing direct models for stellar evolution and feedback, including stellar winds, core-collapse and Type Ia supernovae, radiation pressure, photoionization, and photoelectric heating. We release complete snapshots from three suites of simulations. The first comprises 20 simulations that zoom in on 14 Milky Way (MW)–mass galaxies, five SMC/LMC-mass galaxies, and four lower-mass galaxies including one ultrafaint; we release 39 snapshots across z = 0–10. The second comprises four massive galaxies, with 19 snapshots across z = 1–10. Finally, a high-redshift suite comprises 22 simulations, with 11 snapshots across z = 5–10. Each simulation also includes dozens of resolved lower-mass (satellite) galaxies in its zoom-in region. Snapshots include all stored properties for all dark matter, gas, and star particles, including 11 elemental abundances for stars and gas, and formation times (ages) of star particles. We also release accompanying (sub)halo catalogs, which include galaxy properties and member star particles. For the simulations to z = 0, including all MW-mass galaxies, we release the formation coordinates and an “ex situ” flag for all star particles, pointers to track particles across snapshots, catalogs of stellar streams, and multipole basis expansions for the halo mass distributions. We describe publicly available python packages for reading and analyzing these simulations. 
    more » « less
  5. Abstract The unprecedented infrared spectroscopic capabilities of JWST have provided high-quality interstellar medium metallicity measurements and enabled characterization of the gas-phase mass–metallicity relation (MZR) for galaxies atz≳ 5 for the first time. We analyze the gas-phase MZR and its evolution in a high-redshift suite of FIRE-2 cosmological zoom-in simulations atz= 5–12 and for stellar massesM*∼ 106–1010M. These simulations implement a multichannel stellar feedback model and produce broadly realistic galaxy properties, including when evolved toz= 0. The simulations predict very weak redshift evolution of the MZR over the redshift range studied, with the normalization of the MZR increasing by less than 0.01 dex as redshift decreases fromz= 12 toz= 5. The median MZR in the simulations is well approximated as a constant power-law relation across this redshift range given by log ( Z / Z ) = 0.37 log ( M * / M ) 4.3 . We find good agreement between our best-fit model and recent observations made by JWST at high redshift. The weak evolution of the MZR atz> 5 contrasts with the evolution atz≲ 3, where increasing normalization of the MZR with decreasing redshift is observed and predicted by most models. The FIRE-2 simulations predict increasing scatter in the gas-phase MZR with decreasing stellar mass, in qualitative agreement with some observations. 
    more » « less