skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Threat management priorities for conserving Antarctic biodiversity
Antarctic terrestrial biodiversity faces multiple threats, from invasive species to climate change. Yet no large-scale assessments of threat management strategies exist. Applying a structured participatory approach, we demonstrate that existing conservation efforts are insufficient in a changing world, estimating that 65% (at best 37%, at worst 97%) of native terrestrial taxa and land-associated seabirds are likely to decline by 2100 under current trajectories. Emperor penguins are identified as the most vulnerable taxon, followed by other seabirds and dry soil nematodes. We find that implementing 10 key threat management strategies in parallel, at an estimated present-day equivalent annual cost of US$23 million, could benefit up to 84% of Antarctic taxa. Climate change is identified as the most pervasive threat to Antarctic biodiversity and influencing global policy to effectively limit climate change is the most beneficial conservation strategy. However, minimising impacts of human activities and improved planning and management of new infrastructure projects are cost-effective and will help to minimise regional threats. Simultaneous global and regional efforts are critical to secure Antarctic biodiversity for future generations.  more » « less
Award ID(s):
1840058
PAR ID:
10429912
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; « less
Editor(s):
Tanentzap, Andrew J.
Date Published:
Journal Name:
PLOS Biology
Volume:
20
Issue:
12
ISSN:
1545-7885
Page Range / eLocation ID:
e3001921
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Arctic biodiversity is under threat from both climate-induced environmental change and anthropogenic activity. However, the rapid rate of change and the challenging conditions for studying Arctic environments mean that many research questions must be answered before we can strategically allocate resources for management. Addressing threats to biodiversity in the Arctic is further complicated by the region's complex geopolitics, as eight countries claim jurisdiction over the area, with multiple local considerations such as Indigenous sovereignty and resource rights. Here, we identify research priorities to serve as a starting point for addressing the most pressing threats to Arctic biodiversity. We began by collecting pressing research questions about Arctic biodiversity, thematizing them as either threats or actions, and then categorizing them further into 18 groups. Then, drawing on cross-disciplinary and global expertise of professionals in Arctic science, management, and policy, we considered the barriers to answering these questions and proposed potential solutions that could be implemented if barriers were overcome. Overall, our horizon scan provides an expert assessment of threats (e.g., species’ responses to climate change) and actions (e.g., a lack of fundamental information regarding Arctic biodiversity) needing attention and is intended to guide future conservation action within the Arctic. 
    more » « less
  2. Abstract The American sand lance (Ammodytes americanus, Ammodytidae) and the Northern sand lance (A. dubius, Ammodytidae) are small forage fishes that play an important functional role in the Northwest Atlantic Ocean (NWA). The NWA is a highly dynamic ecosystem currently facing increased risks from climate change, fishing and energy development. We need a better understanding of the biology, population dynamics and ecosystem role ofAmmodytesto inform relevant management, climate adaptation and conservation efforts. To meet this need, we synthesized available data on the (a) life history, behaviour and distribution; (b) trophic ecology; (c) threats and vulnerabilities; and (d) ecosystem services role ofAmmodytesin the NWA. Overall, 72 regional predators including 45 species of fishes, two squids, 16 seabirds and nine marine mammals were found to consumeAmmodytes. Priority research needs identified during this effort include basic information on the patterns and drivers in abundance and distribution ofAmmodytes, improved assessments of reproductive biology schedules and investigations of regional sensitivity and resilience to climate change, fishing and habitat disturbance. Food web studies are also needed to evaluate trophic linkages and to assess the consequences of inconsistent zooplankton prey and predator fields on energy flow within the NWA ecosystem. Synthesis results represent the first comprehensive assessment ofAmmodytesin the NWA and are intended to inform new research and support regional ecosystem‐based management approaches. 
    more » « less
  3. Abstract BackgroundAntarctica and its unique biodiversity are increasingly at risk from the effects of global climate change and other human influences. A significant recent element underpinning strategies for Antarctic conservation has been the development of a system of Antarctic Conservation Biogeographic Regions (ACBRs). The datasets supporting this classification are, however, dominated by eukaryotic taxa, with contributions from the bacterial domain restricted to Actinomycetota and Cyanobacteriota. Nevertheless, the ice-free areas of the Antarctic continent and the sub-Antarctic islands are dominated in terms of diversity by bacteria. Our study aims to generate a comprehensive phylogenetic dataset of Antarctic bacteria with wide geographical coverage on the continent and sub-Antarctic islands, to investigate whether bacterial diversity and distribution is reflected in the current ACBRs. ResultsSoil bacterial diversity and community composition did not fully conform with the ACBR classification. Although 19% of the variability was explained by this classification, the largest differences in bacterial community composition were between the broader continental and maritime Antarctic regions, where a degree of structural overlapping within continental and maritime bacterial communities was apparent, not fully reflecting the division into separate ACBRs. Strong divergence in soil bacterial community composition was also apparent between the Antarctic/sub-Antarctic islands and the Antarctic mainland. Bacterial communities were partially shaped by bioclimatic conditions, with 28% of dominant genera showing habitat preferences connected to at least one of the bioclimatic variables included in our analyses. These genera were also reported as indicator taxa for the ACBRs. ConclusionsOverall, our data indicate that the current ACBR subdivision of the Antarctic continent does not fully reflect bacterial distribution and diversity in Antarctica. We observed considerable overlap in the structure of soil bacterial communities within the maritime Antarctic region and within the continental Antarctic region. Our results also suggest that bacterial communities might be impacted by regional climatic and other environmental changes. The dataset developed in this study provides a comprehensive baseline that will provide a valuable tool for biodiversity conservation efforts on the continent. Further studies are clearly required, and we emphasize the need for more extensive campaigns to systematically sample and characterize Antarctic and sub-Antarctic soil microbial communities. 
    more » « less
  4. Subterranean ecosystems harbor globally important yet highly threatened biodiversity. Unfortunately, subterranean biodiversity is often neglected in regional and global conservation initiatives, including conservation assessments. We reviewed the conservation status and threats to subterranean species based on the two most popular conservation assessment protocols in North America, NatureServe and International Union for Conservation of Nature (IUCN) Red List, as well as federal and state/provincial protection status of the 1,460 described cave-obligate species occurring in the United States and Canada. Only 9.3% of species have been assessed under IUCN Red List criteria compared to 77.9% of species assessed under NatureServe criteria; notably, 1,065 and 116 of species are assessed at an elevated risk of extinction by NatureServe and IUCN Red List, respectively. Just 41 species are listed or proposed to be listed under the U.S. Endangered Species Act and none of the 10 species that occur in Canada are federally listed. Vertebrates (fishes and salamanders), decapods (crayfishes and shrimps), and U.S. federally listed species are overrepresented on the list of species with IUCN Red List assessments compared to other taxonomic groups, particularly arachnids, millipedes, and insects. Most species assessed under IUCN Red List criteria as well as federally listed species occur in the Edwards Plateau and Balcones Escarpment karst region of Texas. Major threats frequently reported in conservation assessments include habitat degradation, pollution/contamination, recreational activities, climate change, and groundwater exploitation; however, information on threats was lacking for most species for nearly all major taxonomic groups, except decapods, fishes, and salamanders. The intrinsic vulnerability of subterranean biodiversity coupled with the many potential threats facing species and extensive biodiversity knowledge gaps makes assessing their conservation status and ultimately their protection a challenging endeavor. We highlight several limitations of implementing current conservation assessment approaches while offering recommendations to improve our ability to assess the conservation status of subterranean biodiversity to better inform sound local to global conservation policies and actions. 
    more » « less
  5. Abstract Private woodland owners (PWOs) face an increasing number of considerations for climate change adaptation and mitigation activities in their forest management. Evidence suggests there may be a disconnect between PWOs’ climate change perceptions and behaviors, which can limit implementation. We conducted seventeen semistructured interviews in Maine to develop a typological framework of PWOs based on their perceptions of climate-induced threats and efficacy. Our results produced three types of PWOs: the steady-as-they-go landowner (low perceived threat), the science-driven landowner (high perceived threat; high efficacy), and the seeking-support landowner (high perceived threat; low efficacy). Although all three types of PWOs regularly implemented resistance and resilience practices, their attitudes toward transition practices (i.e., assisted migration) diverged based on their perceptions of threat and efficacy. This typological framework can be used when targeting communications to PWOs regarding the overlap between climate adaptive management and traditional best management practices. Study Implications: PWOs in our study recognized climate-related impacts while implementing diverse forest management practices to meet both climate-related and non-climate-related objectives. The divergent attitudes toward transition practices exhibited by our three PWO types highlight the notion that adaptive practices can be both intentional and incidental. Our findings suggest that outreach efforts should understand PWO perceptions of climate change threats and their feelings of efficacy in responding to such threats. When combined with knowledge about the overlap between traditional best management practices and new climate-adaptive strategies, extension and outreach efforts can tailor their messaging to fit the appropriate audience. 
    more » « less