skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Template Attack Against AES in Counter Mode With Unknown Initial Counter
Despite long-contested viability, numerous applications still rely upon Advance Encryption Standard (AES) in Counter mode (AES-CTR). Research supports that the vulnerabilities associated with CTR from a mathematical perspective, mainly forgery attempts, stem from misusing the nonce. When paired with cryptographic algorithms, assuming no nonce misuse increases the complexity of unraveling CTR. This paper examines the pairing of CTR with AES-128 (AES-CTR). It includes (1) full key recovery for a software implementation of AES-CTR utilizing a template attack (TA) and (2) enhancing the TA analysis's point of interest (POI) using first-order analysis and known key to identify leaky samples.  more » « less
Award ID(s):
1955231
PAR ID:
10429925
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
2023 IEEE 13th Annual Computing and Communication Workshop and Conference (CCWC)
Page Range / eLocation ID:
0525 to 0533
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper provides efficient authenticated-encryption (AE) schemes in which a ciphertext is a commitment to the key. These are extended, at minimal additional cost, to schemes where the ciphertext is a commitment to all encryption inputs, meaning key, nonce, associated data and message. Our primary schemes are modifications of GCM (for basic, unique-nonce AE security) and AES-GCM-SIV (for misuse-resistant AE security) and add both forms of commitment without any increase in ciphertext size. We also give more generic, but somewhat more costly, solutions. 
    more » « less
  2. null (Ed.)
    We analyze the multi-user security of the streaming encryption in Google's Tink library via an extended version of the framework of nonce-based online authenticated encryption of Hoang et al. (CRYPTO'15) to support random-access decryption. We show that Tink's design choice of using random nonces and a nonce-based key-derivation function indeed improves the concrete security bound. We then give two better alternatives that are more robust against randomness failure. In addition, we show how to efficiently instantiate the key-derivation function via AES, instead of relying on HMAC-SHA256 like the current design in Tink. To accomplish this we give a multi-user analysis of the XOR-of-permutation construction of Bellare, Krovetz, and Rogaway (EUROCRYPT'98). 
    more » « less
  3. The customary formulation of authenticated encryption (AE) requires the decrypting party to supply the correct nonce with each ciphertext it decrypts. To enable this, the nonce is often sent in the clear alongside the ciphertext. But doing this can forfeit anonymity and degrade usability. Anonymity can also be lost by transmitting associated data (AD) or a session-ID (used to identify the operative key). To address these issues, we introduce anonymous AE, wherein ciphertexts must conceal their origin even when they are understood to encompass everything needed to decrypt (apart from the receiver’s secret state). We formalize a type of anonymous AE we call anAE, anonymous nonce-based AE, which generalizes and strengthens conventional nonce-based AE, nAE. We provide an efficient construction for anAE, NonceWrap, from an nAE scheme and a blockcipher. We prove NonceWrap secure. While anAE does not address privacy loss through traffic-flow analysis, it does ensure that ciphertexts, now more expansively construed, do not by themselves compromise privacy. 
    more » « less
  4. Bhargavan, Karthikeyan; Oswald, Elisabeth; Prabhakaran, Manoj (Ed.)
    This paper gives the first definitions and constructions for incremental pseudo-random functions (IPRFs). The syntax is nonce based. (Algorithms are deterministic but may take as input a non-repeating quantity called a nonce.) The design approach is modular. First, given a scheme secure only in the single-document setting (there is just one document on which incremental updates are being performed) we show how to generically build a scheme that is secure in the more realistic multi-document setting (there are many documents, and they are simultaneously being incrementally updated). Then we give a general way to build an IPRF from (1) an incremental hash function with weak collision resistance properties and (2) a symmetric encryption scheme. (This adapts the classic Carter-Wegman paradigm used to build message authentication schemes in the non-incremental setting.) This leads to many particular IPRFs. Our work has both practical and theoretical motivation and value: Incremental PRFs bring the benefits of incrementality to new applications (such as incremental key derivation), and the movement from randomized or stateful schemes to nonce based ones, and from UF (unforgeability) to PRF security, bring incremental symmetric cryptography up to speed with the broader field of symmetric cryptography itself. 
    more » « less
  5. In this paper, we compute hundreds of Bitcoin private keys and dozens of Ethereum, Ripple, SSH, and HTTPS private keys by carrying out cryptanalytic attacks against digital signatures contained in public blockchains and Internet-wide scans. The ECDSA signature algorithm requires the generation of a per-message secret nonce. If this nonce is not generated uniformly at random, an attacker can potentially exploit this bias to compute the long-term signing key. We use a lattice-based algorithm for solving the hidden number problem to efficiently compute private ECDSA keys that were used with biased signature nonces due to multiple apparent implementation vulnerabilities. 
    more » « less