skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High Pressure Spherically Expanding Laminar Flame Speed Measurement with Plasma Affected Data
Measurements of a propagating flame are crucial to the understanding and verification of important flame phenomena. Specifically, laminar, unstretched flame speed is employed to describe complex flame behavior such as turbulence or stability. This data is necessary because advanced and more efficient combustion devices operate at these high pressures where this data is less reliable from the onset of flame instabilities. This research aims to develop a new flame speed measurement technique as an improvement over the traditional method. The analysis utilizes a constant pressure technique where the velocity of a spherical flame is visually measured. Flame propagation of stoichiometric flame from 1-6 atm are examined at radius up to 20mm at 300K. The novel analysis method incorporates flame data which is ignition affected to improve the traditional constant pressure methods. This allows for with the inclusion of ultra-small, highly stretched flame radii (0-10 mm). Electrical measurements of the ignition are utilized with a thermodynamic model to predict the velocity and temperature which result from plasma formation. This predicted temperature is used describe the influence ignition has on the flame velocity and is compared to the traditional adiabatic flame propagation over the radius observed. The extrapolated laminar burning speed measurement is found for both traditional and novel methods where the novel method has the benefit of additional, previously unused, flame propagation at the high stretch regime. Additionally, practical information about the plasma morphology, crucial to the experimental application of this method is also discussed.  more » « less
Award ID(s):
2137585
PAR ID:
10430094
Author(s) / Creator(s):
;
Date Published:
Journal Name:
AIAA SciTech
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Laminar flame speeds at high pressure are difficult to experimentally observe. Typically, high-pressure flame diagnostic is accomplished through observation of a spherically expanding flame in a constant volume chamber. However, flame instabilities at large radius and ignition effects at small radius limit measurable pressure range for Laminar flame speeds. Advanced combustion devices which operate at high pressures to improve capabilities and efficiencies require high quality laminar flame speed to aid in simulations and development. To expand the measurable range of flame data for high pressure flame measurement, this study proposes the further investigation of the ignition source and the incorporation of ignition diagnostics into the traditional flame speed analysis. To achieve this goal in future research, experimental spark propagation is observed and described in detail with the goal of improved experimental control and understanding. Parameters such as pressure, composition, electrode geometry and surface quality are discussed and the implication it has on the observed schlieren kernel propagation. Careful preparation of the ignition source can lead to improved surface and shape for future flame measurements. It is also shown that the thermal energy dissipated into the gas during discharge can be captured experimentally through measurement of the spark voltage, current and plasma sheath voltage drop. With the experimentally captured thermal energy, a simple energy balance can be used to describe the size of the observed ignition kernel for radius larger than 0.3 mm (following breakdown). The measurement of the thermal energy is described utilizing two experimental methods to find the discharge voltage of the nonequilibrium region at the boundary of the electrodes. 
    more » « less
  2. Abstract The next generation of advanced combustion devices is being developed to operate under ultra-high-pressure conditions. However, under such extreme conditions, flame tends to become unstable and measurement of fundamental properties such as the laminar flame speed becomes challenging. One potential method to resolve this issue is measuring the ignition-affected region during spherically expanding flame experiments. The flame in this region is more resistant to perturbations and remains smooth due to the high stretch rates (i.e. small radii). Stable flame propagation allows for improved flame measurement, however, the experimentally observed kernel propagation is a function of both inflammation and ignition plasma. Therefore, the goal of the present study is to better understand the plasma formation and propagation during the ignition process, which would allow for reliable laminar flame speed measurements. To accomplish this goal, thermal plasma operating at high pressures is studied with emphasis on the spark energy effects on the formation of the ignition kernel. The thermal effect of the plasma is experimentally observed using a high-speed Schlieren imaging system. The energy dissipated within the plasma is measured with the use of voltage and current probes with a measurement of plasma sheath voltage drop as an input to numerical modeling. The measured kernel propagation rate is used to assess the accuracy of the model. The experiments and modeling are conducted in dry air at 1, 3, and 5 atm as well as in CH 4 -N 2 mixtures at 1 atm, and kernel radius, temperature, and mass are reported. The voltage-drop (as a non-thermal loss) is measured to be approximately 330 ± 5 V (dry air at 1 atm) for glow plasma with a large dependency on pressure, gas composition, electrode surface quality, electrode geometry, electrode shape, and current density. The same loss within the arc plasma is measured to be 15 ± 5 V, however the arc phase loss which agrees with arc propagation is significantly higher (∼45 V) which suggest additional unaccounted for phenomena occurring during the arc phase. With these losses, the modeling results are shown to predict the final kernel radius within 10%–20% of the observed kernel size. The difference found between the modeling and experimental results is determined to be a result of assuming that the primary loss mechanism (voltage drop across sheath formation) remains constant for the duration of glow discharge. The discrepancy for arc discharge is discussed with several potential sources, however, additional studies are required to better understand how the arc formation affects the kernel propagation. 
    more » « less
  3. Accurate measurements of the laminar flame speed are useful to constrain the uncertainty of chemical models. However, for slowly propagating flames, buoyancy distorts the flame and measuring flame speeds accurately becomes challenging. This is relevant for novel hydrofluorocarbon refrigerants, preventing an accurate assessment of their flammability. Additionally, nitrogenated chemistry could be investigated by measurements of ammonia/air flames but the low laminar flame speeds also lead to similar issues. The only way to circumvent buoyancy-induced effects is to gather measurements in microgravity. In this study, an image processing technique was developed to accurately extract the radius of the spherical flame. This is required as the projection of a sphere on a plane leads to measurement error. A lab-scale drop tower was designed and built to achieve approximately 500 ms of free fall time. The direct imaging technique was combined with the drop tower to gather flame measurements in free fall. The methodology was applied to obtain the laminar flame speed of a lean, high-pressure methane/air flame. 
    more » « less
  4. The unstretched laminar flame speed (LFS) plays a key role in engine models and predictions of flame propagation. It is also an essential parameter in the study of turbulent combustion and can be directly used in many turbulent combustion models. Therefore, it is important to predict the laminar flame speed accurately and efficiently. Two improved correlations for the unstretched laminar flame speed, namely improved power law and improved Arrhenius form correlations, are proposed for iso-octane/air mixtures in this study, using simulated results for typical operating conditions for spark-ignition engines: unburned temperatures of 300-950 K, pressures of 1-120 bar, and equivalence ratios of 0.6-1.5. The original data points used to develop the new correlations were obtained using the detailed combustion kinetics for iso-octane from Lawrence Livermore National Laboratory (LLNL). The three coefficients in the improved power law correlation were determined using a methodology different from previous approaches. The improved Arrhenius form correlation employs a function of unburned gas temperature to replace the flame temperature, making the expression briefer and making the coefficients easier to calculate. The improved Arrhenius method is able to predict the trends and the values of laminar flame speed with improved accuracy over a larger range of operating conditions. The improved power law method also works well but for a relatively narrow range of predictions. The improved Arrhenius method is recommended, considering its overall fitting error was only half of that using the improved power law correlation and it was closer to the experimental measurements. Even though ϕm, the equivalence ratio at which the laminar flame speed reaches its maximum, is not monotonic with pressure, this dependence is still included, since it produces least-rich best torque (LBT). The comparisons between the improved correlations in this study and the experimental measurements and the other correlations from various researchers are shown as well. 
    more » « less
  5. The ammonia (NH3) and dimethyl ether (DME) mixture is a promising alternative fuel that offers the potential for cleaner combustion. This study presents an investigation of the autoignition-assisted flame speeds of stochiometric NH3/DME mixtures under conditions relevant to practical combustion systems. Experiments were conducted at pressures of 5 and 10 bar, gas temperatures ranging from 625 to 708 K, and three DME concentrations (10, 20, and 30%, mole fraction basis) in NH3/DME fuel mixtures using a rapid compression machine-flame (RCM-Flame) apparatus. For the majority of the autoignition experiments, first-stage ignition delay time was observed. Thus, the flame experiments were performed by igniting the spark both before and after the first-stage ignition delay time. The results are presented in terms of the Beta-Damköhler Number, defined as the ratio of spark ignition time to the first-stage ignition delay. The flame speed changes depending on the Beta-Damköhler Number, pressure, gas temperature, and DME concentration. The flame speed increases by increasing the temperature, decreasing the pressure, and increasing DME concentrations. However, the effect of Beta-Damköhler Number on flame speed is complicated: with 10% DME in the mixture, the flame speed is independent to Beta-Damköhler Number, and slight observed slight decrease of flame speed is due to the temperature drop during the post-compression period; with 20% DME in the mixture, at both pressures, the flame speed jumps after the first ignition delay (or Beta-Damköhler Number of one) , and remains constant before and after; similar behavior was observed with 30% DME in the mixture at 5 bar, however, at some temperatures, the flame speed increases at Beta-Damköhler Number of greater than one, and at 10 bar, the first ignition delay was short and flame speed was not measured at Beta-Damköhler Number of less than one. For all studied conditions, a linear trend was observed between burning velocity and stretch rate. Positive Markstein lengths were observed at most conditions, except for two specific gas temperatures (664 K at 5 bar and 671 K at 10 bar) with 30% DME, where negative Markstein lengths are found. One-dimensional laminar flame speed simulations agreed with measured data for Beta-Damköhler Numbers. less than one, but underpredicted the measured data at other conditions. 
    more » « less