Abstract Early diagnosis of Alzheimer’s disease plays a pivotal role in patient care and clinical trials. In this study, we have developed a new approach based on 3D deep convolutional neural networks to accurately differentiate mild Alzheimer’s disease dementia from mild cognitive impairment and cognitively normal individuals using structural MRIs. For comparison, we have built a reference model based on the volumes and thickness of previously reported brain regions that are known to be implicated in disease progression. We validate both models on an internal held-out cohort from The Alzheimer's Disease Neuroimaging Initiative (ADNI) and on an external independent cohort from The National Alzheimer's Coordinating Center (NACC). The deep-learning model is accurate, achieved an area-under-the-curve (AUC) of 85.12 when distinguishing between cognitive normal subjects and subjects with either MCI or mild Alzheimer’s dementia. In the more challenging task of detecting MCI, it achieves an AUC of 62.45. It is also significantly faster than the volume/thickness model in which the volumes and thickness need to be extracted beforehand. The model can also be used to forecast progression: subjects with mild cognitive impairment misclassified as having mild Alzheimer’s disease dementia by the model were faster to progress to dementia over time. An analysis of the features learned by the proposed model shows that it relies on a wide range of regions associated with Alzheimer's disease. These findings suggest that deep neural networks can automatically learn to identify imaging biomarkers that are predictive of Alzheimer's disease, and leverage them to achieve accurate early detection of the disease.
more »
« less
Detection of Mild Cognitive Impairment from Language Markers with Crossmodal Augmentation
Mild cognitive impairment is the prodromal stage of Alzheimer’s disease. Its detection has been a critical task for establishing cohort studies and developing therapeutic interventions for Alzheimer’s. Various types of markers have been developed for detection. For example, imaging markers from neuroimaging have shown great sensitivity, while its cost is still prohibitive for large-scale screening of early dementia. Recent advances from digital biomarkers, such as language markers, have provided an accessible and affordable alternative. While imaging markers give anatomical descriptions of the brain, language markers capture the behavior characteristics of early dementia subjects. Such differences suggest the benefits of auxiliary information from the imaging modality to improve the predictive power of unimodal predictive models based on language markers alone. However, one significant barrier to the joint analysis is that in typical cohorts, there are only very limited subjects that have both imaging and language modalities. To tackle this challenge, in this paper, we develop a novel crossmodal augmentation tool, which leverages auxiliary imaging information to improve the feature space of language markers so that a subject with only language markers can benefit from imaging information through the augmentation. Our experimental results show that the multi-modal predictive model trained with language markers and auxiliary imaging information significantly outperforms unimodal predictive models.
more »
« less
- PAR ID:
- 10430103
- Date Published:
- Journal Name:
- Pacific Symposium on Biocomputing 2023
- Page Range / eLocation ID:
- 7 to 18
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Saif, Mehrdad (Ed.)This study explores cutting-edge computational technologies and intelligent methods to create realistic synthetic data, focusing on dementia-centric Magnetic Resonance Imaging (MRI) scans related to Alzheimer’s and Parkinson’s diseases. The research delves into Generative Adversarial Networks (GANs), Variational Autoencoders, and Diffusion Models, comparing their efficacy in generating synthetic MRI scans. Using datasets from Alzheimer’s and Parkinson’s patients, the study reveals intriguing findings. In the Alzheimer dataset, diffusion models produced non-dementia images with the lowest Frechet Inception Distance (FID) score at 92.46, while data-efficient GANs excelled in generating dementia images with an FID score of 178.53. In the Parkinson dataset, data-efficient GANs achieved remarkable FID scores of 102.71 for dementia images and 129.77 for non-dementia images. The study also introduces a novel aspect by incorporating a classification study, validating the generative metrics. DenseNets, a deep learning architecture, exhibited superior performance in disease detection compared to ResNets. Training both models on images generated by diffusion models further improved results, with DenseNet achieving accuracies of 80.84% and 92.42% in Alzheimer’s and Parkinson’s disease detection, respectively. The research not only presents innovative generative architectures but also emphasizes the importance of classification metrics, providing valuable insights into the synthesis and detection of neurodegenerative diseases through advanced computational techniques.more » « less
-
Dementia is primarily caused by neurodegenerative diseases like Alzheimer’s disease (AD). It affects millions worldwide, making detection and monitoring crucial. This study focuses on the detection of dementia from speech transcripts of controls and dementia groups. We propose encoding in-text pauses and filler words (e.g., “uh” and “um”) in text-based language models and thoroughly evaluating their impact on performance (e.g., accuracy). Additionally, we suggest using contrastive learning to improve performance in a multi-task framework. Our results demonstrate the effectiveness of our approaches in enhancing the model’s performance, achieving 87% accuracy and an 86% f1-score. Compared to the state of the art, our approach has similar performance despite having significantly fewer parameters. This highlights the importance of pause and filler word encoding on the detection of dementia.more » « less
-
Background:Mild cognitive impairment (MCI) can be an early sign of Alzheimer’s disease and other types of dementia detectable through gait analysis. Curve walking, which demands greater cognitive and motor skills, may be more sensitive in MCI detection than straight walking. However, few studies have compared gait performance in older adults with and without MCI in these conditions. Objective:To compare the capability of curve and straight walking tests for the detection of MCI among older adults. Methods:We employed a Kinect v.2 camera to record the gait of 55 older adults (30 healthy controls, 25 with MCI) during single-task straight and curve walking tests. We examined 50 gait markers and conducted statistical analyses to compare groups and conditions. The trail was approved with protocol No. IR.SEMUMS.REC.1398.237 by the ethics committee of Semnan University of Medical Sciences in Iran. Results:Older adults with MCI exhibited more compromised gait performance, particularly during curve walking. Curve walking outperformed straight walking in MCI detection, with several gait markers showing significant differences between healthy controls and MCI patients. These markers encompass average velocity, cadence, temporal markers (e.g., gait cycle subphase durations), spatial markers (e.g., foot position changes during gait subphases), and spatiotemporal markers (e.g., step and stride velocities). Conclusions:Our study suggests curve walking as a more informative and challenging test for MCI detection among older adults, facilitating early diagnosis using non-invasive, cost-effective tools like the Kinect v.2 camera, complementing cognitive assessments in early diagnosis, and tracking MCI progression to dementia.more » « less
-
Abstract Alzheimer’s Disease (AD) is a progressive neurodegenerative disease and the leading cause of dementia. Early diagnosis is critical for patients to benefit from potential intervention and treatment. The retina has emerged as a plausible diagnostic site for AD detection owing to its anatomical connection with the brain. However, existing AI models for this purpose have yet to provide a rational explanation behind their decisions and have not been able to infer the stage of the disease’s progression. Along this direction, we propose a novel model-agnostic explainable-AI framework, called Granu$$\underline{la}$$ r Neuron-le$$\underline{v}$$ el Expl$$\underline{a}$$ iner (LAVA), an interpretation prototype that probes into intermediate layers of the Convolutional Neural Network (CNN) models to directly assess the continuum of AD from the retinal imaging without the need for longitudinal or clinical evaluations. This innovative approach aims to validate retinal vasculature as a biomarker and diagnostic modality for evaluating Alzheimer’s Disease. Leveraged UK Biobank cognitive tests and vascular morphological features demonstrate significant promise and effectiveness of LAVA in identifying AD stages across the progression continuum.more » « less
An official website of the United States government

