skip to main content


Title: Detection of Mild Cognitive Impairment from Language Markers with Crossmodal Augmentation
Mild cognitive impairment is the prodromal stage of Alzheimer’s disease. Its detection has been a critical task for establishing cohort studies and developing therapeutic interventions for Alzheimer’s. Various types of markers have been developed for detection. For example, imaging markers from neuroimaging have shown great sensitivity, while its cost is still prohibitive for large-scale screening of early dementia. Recent advances from digital biomarkers, such as language markers, have provided an accessible and affordable alternative. While imaging markers give anatomical descriptions of the brain, language markers capture the behavior characteristics of early dementia subjects. Such differences suggest the benefits of auxiliary information from the imaging modality to improve the predictive power of unimodal predictive models based on language markers alone. However, one significant barrier to the joint analysis is that in typical cohorts, there are only very limited subjects that have both imaging and language modalities. To tackle this challenge, in this paper, we develop a novel crossmodal augmentation tool, which leverages auxiliary imaging information to improve the feature space of language markers so that a subject with only language markers can benefit from imaging information through the augmentation. Our experimental results show that the multi-modal predictive model trained with language markers and auxiliary imaging information significantly outperforms unimodal predictive models.  more » « less
Award ID(s):
1749940 2212174
PAR ID:
10430103
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Pacific Symposium on Biocomputing 2023
Page Range / eLocation ID:
7 to 18
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Early diagnosis of Alzheimer’s disease plays a pivotal role in patient care and clinical trials. In this study, we have developed a new approach based on 3D deep convolutional neural networks to accurately differentiate mild Alzheimer’s disease dementia from mild cognitive impairment and cognitively normal individuals using structural MRIs. For comparison, we have built a reference model based on the volumes and thickness of previously reported brain regions that are known to be implicated in disease progression. We validate both models on an internal held-out cohort from The Alzheimer's Disease Neuroimaging Initiative (ADNI) and on an external independent cohort from The National Alzheimer's Coordinating Center (NACC). The deep-learning model is accurate, achieved an area-under-the-curve (AUC) of 85.12 when distinguishing between cognitive normal subjects and subjects with either MCI or mild Alzheimer’s dementia. In the more challenging task of detecting MCI, it achieves an AUC of 62.45. It is also significantly faster than the volume/thickness model in which the volumes and thickness need to be extracted beforehand. The model can also be used to forecast progression: subjects with mild cognitive impairment misclassified as having mild Alzheimer’s disease dementia by the model were faster to progress to dementia over time. An analysis of the features learned by the proposed model shows that it relies on a wide range of regions associated with Alzheimer's disease. These findings suggest that deep neural networks can automatically learn to identify imaging biomarkers that are predictive of Alzheimer's disease, and leverage them to achieve accurate early detection of the disease.

     
    more » « less
  2. Dementia is primarily caused by neurodegenerative diseases like Alzheimer’s disease (AD). It affects millions worldwide, making detection and monitoring crucial. This study focuses on the detection of dementia from speech transcripts of controls and dementia groups. We propose encoding in-text pauses and filler words (e.g., “uh” and “um”) in text-based language models and thoroughly evaluating their impact on performance (e.g., accuracy). Additionally, we suggest using contrastive learning to improve performance in a multi-task framework. Our results demonstrate the effectiveness of our approaches in enhancing the model’s performance, achieving 87% accuracy and an 86% f1-score. Compared to the state of the art, our approach has similar performance despite having significantly fewer parameters. This highlights the importance of pause and filler word encoding on the detection of dementia.

     
    more » « less
  3. Abstract Background Mortality research has identified biomarkers predictive of all-cause mortality risk. Most of these markers, such as body mass index, are predictive cross-sectionally, while for others the longitudinal change has been shown to be predictive, for instance greater-than-average muscle and weight loss in older adults. And while sometimes markers are derived from imaging modalities such as DXA, full scans are rarely used. This study builds on that knowledge and tests two hypotheses to improve all-cause mortality prediction. The first hypothesis is that features derived from raw total-body DXA imaging using deep learning are predictive of all-cause mortality with and without clinical risk factors, meanwhile, the second hypothesis states that sequential total-body DXA scans and recurrent neural network models outperform comparable models using only one observation with and without clinical risk factors. Methods Multiple deep neural network architectures were designed to test theses hypotheses. The models were trained and evaluated on data from the 16-year-long Health, Aging, and Body Composition Study including over 15,000 scans from over 3000 older, multi-race male and female adults. This study further used explainable AI techniques to interpret the predictions and evaluate the contribution of different inputs. Results The results demonstrate that longitudinal total-body DXA scans are predictive of all-cause mortality and improve performance of traditional mortality prediction models. On a held-out test set, the strongest model achieves an area under the receiver operator characteristic curve of 0.79. Conclusion This study demonstrates the efficacy of deep learning for the analysis of DXA medical imaging in a cross-sectional and longitudinal setting. By analyzing the trained deep learning models, this work also sheds light on what constitutes healthy aging in a diverse cohort. 
    more » « less
  4. null (Ed.)
    Alzheimer’s Disease (AD) is a chronic neurodegenerative disease that causes severe problems in patients’ thinking, memory, and behavior. An early diagnosis is crucial to prevent AD progression; to this end, many algorithmic approaches have recently been proposed to predict cognitive decline. However, these predictive models often fail to integrate heterogeneous genetic and neuroimaging biomarkers and struggle to handle missing data. In this work we propose a novel objective function and an associated optimization algorithm to identify cognitive decline related to AD. Our approach is designed to incorporate dynamic neuroimaging data by way of a participant-specific augmentation combined with multimodal data integration aligned via a regression task. Our approach, in order to incorporate additional side-information, utilizes structured regularization techniques popularized in recent AD literature. Armed with the fixed-length vector representation learned from the multimodal dynamic and static modalities, conventional machine learning methods can be used to predict the clinical outcomes associated with AD. Our experimental results show that the proposed augmentation model improves the prediction performance on cognitive assessment scores for a collection of popular machine learning algorithms. The results of our approach are interpreted to validate existing genetic and neuroimaging biomarkers that have been shown to be predictive of cognitive decline. 
    more » « less
  5. Abstract

    Alzheimer’s Disease (AD) is a progressive neurodegenerative disease and the leading cause of dementia. Early diagnosis is critical for patients to benefit from potential intervention and treatment. The retina has emerged as a plausible diagnostic site for AD detection owing to its anatomical connection with the brain. However, existing AI models for this purpose have yet to provide a rational explanation behind their decisions and have not been able to infer the stage of the disease’s progression. Along this direction, we propose a novel model-agnostic explainable-AI framework, called Granu$$\underline{la}$$la̲r Neuron-le$$\underline{v}$$v̲el Expl$$\underline{a}$$a̲iner (LAVA), an interpretation prototype that probes into intermediate layers of the Convolutional Neural Network (CNN) models to directly assess the continuum of AD from the retinal imaging without the need for longitudinal or clinical evaluations. This innovative approach aims to validate retinal vasculature as a biomarker and diagnostic modality for evaluating Alzheimer’s Disease. Leveraged UK Biobank cognitive tests and vascular morphological features demonstrate significant promise and effectiveness of LAVA in identifying AD stages across the progression continuum.

     
    more » « less