Dementia is primarily caused by neurodegenerative diseases like Alzheimer’s disease (AD). It affects millions worldwide, making detection and monitoring crucial. This study focuses on the detection of dementia from speech transcripts of controls and dementia groups. We propose encoding in-text pauses and filler words (e.g., “uh” and “um”) in text-based language models and thoroughly evaluating their impact on performance (e.g., accuracy). Additionally, we suggest using contrastive learning to improve performance in a multi-task framework. Our results demonstrate the effectiveness of our approaches in enhancing the model’s performance, achieving 87% accuracy and an 86% f1-score. Compared to the state of the art, our approach has similar performance despite having significantly fewer parameters. This highlights the importance of pause and filler word encoding on the detection of dementia.
more »
« less
An Empirical Analysis of Diffusion, Autoencoders, and Adversarial Deep Learning Models for Predicting Dementia Using High-Fidelity MRI
This study explores cutting-edge computational technologies and intelligent methods to create realistic synthetic data, focusing on dementia-centric Magnetic Resonance Imaging (MRI) scans related to Alzheimer’s and Parkinson’s diseases. The research delves into Generative Adversarial Networks (GANs), Variational Autoencoders, and Diffusion Models, comparing their efficacy in generating synthetic MRI scans. Using datasets from Alzheimer’s and Parkinson’s patients, the study reveals intriguing findings. In the Alzheimer dataset, diffusion models produced non-dementia images with the lowest Frechet Inception Distance (FID) score at 92.46, while data-efficient GANs excelled in generating dementia images with an FID score of 178.53. In the Parkinson dataset, data-efficient GANs achieved remarkable FID scores of 102.71 for dementia images and 129.77 for non-dementia images. The study also introduces a novel aspect by incorporating a classification study, validating the generative metrics. DenseNets, a deep learning architecture, exhibited superior performance in disease detection compared to ResNets. Training both models on images generated by diffusion models further improved results, with DenseNet achieving accuracies of 80.84% and 92.42% in Alzheimer’s and Parkinson’s disease detection, respectively. The research not only presents innovative generative architectures but also emphasizes the importance of classification metrics, providing valuable insights into the synthesis and detection of neurodegenerative diseases through advanced computational techniques.
more »
« less
- Award ID(s):
- 2231200
- PAR ID:
- 10571779
- Editor(s):
- Saif, Mehrdad
- Publisher / Repository:
- IEEE Access
- Date Published:
- Journal Name:
- IEEE Access
- Volume:
- 12
- ISSN:
- 2169-3536
- Page Range / eLocation ID:
- 131231 to 131243
- Subject(s) / Keyword(s):
- Diffusion models data augmentation biomedical deep learning dementia generative adversarial networks
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Deep learning models rely heavily on extensive training data, but obtaining sufficient real-world data remains a major challenge in clinical fields. To address this, we explore methods for generating realistic synthetic multivariate fall data to supplement limited real-world samples collected from three fall-related datasets: SmartFallMM, UniMib, and K-Fall. We apply three conventional time-series augmentation techniques, a Diffusion-based generative AI method, and a novel approach that extracts fall segments from public video footage of older adults. A key innovation of our work is the exploration of two distinct approaches: video-based pose estimation to extract fall segments from public footage, and Diffusion models to generate synthetic fall signals. Both methods independently enable the creation of highly realistic and diverse synthetic data tailored to specific sensor placements. To our knowledge, these approaches and especially their application in fall detection represent rarely explored directions in this research area. To assess the quality of the synthetic data, we use quantitative metrics, including the Fréchet Inception Distance (FID), Discriminative Score, Predictive Score, Jensen–Shannon Divergence (JSD), and Kolmogorov–Smirnov (KS) test, and visually inspect temporal patterns for structural realism. We observe that Diffusion-based synthesis produces the most realistic and distributionally aligned fall data. To further evaluate the impact of synthetic data, we train a long short-term memory (LSTM) model offline and test it in real time using the SmartFall App. Incorporating Diffusion-based synthetic data improves the offline F1-score by 7–10% and boosts real-time fall detection performance by 24%, confirming its value in enhancing model robustness and applicability in real-world settings.more » « less
-
Generative Adversarial Networks (GANs) have shown stupendous power in generating realistic images to an extend that human eyes are not capable of recognizing them as synthesized. State-of-the-art GAN models are capable of generating realistic and high-quality images, which promise unprecedented opportunities for generating design concepts. Yet, the preliminary experiments reported in this paper shed light on a fundamental limitation of GANs for generative design: lack of novelty and diversity in generated samples. This article conducts a generative design study on a large-scale sneaker dataset based on StyleGAN, a state-of-the-art GAN architecture, to advance the understanding of the performance of these generative models in generating novel and diverse samples (i.e., sneaker images). The findings reveal that although StyleGAN can generate samples with quality and realism, the generated and style-mixed samples highly resemble the training dataset (i.e., existing sneakers). This article aims to provide future research directions and insights for the engineering design community to further realize the untapped potentials of GANs for generative design.more » « less
-
Faggioli, G; Ferro, N; Galuščáková, P; Herrera, A (Ed.)The MEDVQA-GI challenge addresses the integration of AI-driven text-to-image generative models in medical diagnostics, aiming to enhance diagnostic capabilities through synthetic image generation. Existing methods primarily focus on static image analysis and lack the dynamic generation of medical imagery from textual descriptions. This study intends to partially close this gap by introducing a novel approach based on fine-tuned generative models to generate dynamic, scalable, and precise images from textual descriptions. Particularly, our system integrates fine-tuned Stable Diffusion and DreamBooth models, as well as Low-Rank Adaptation (LORA), to generate high-fidelity medical images. The problem is around two sub-tasks namely: image synthesis (IS) and optimal prompt production (OPG). The former creates medical images via verbal prompts, whereas the latter provides prompts that produce high-quality images in specified categories. The study emphasizes the limitations of traditional medical image generation methods, such as hand sketching, constrained datasets, static procedures, and generic models. Our evaluation measures showed that Stable Diffusion surpasses CLIP and DreamBooth + LORA in terms of producing high-quality, diversified images. Specifically, Stable Diffusion had the lowest Fréchet Inception Distance (FID) scores (0.099 for single center, 0.064 for multi-center, and 0.067 for combined), indicating higher image quality. Furthermore, it had the highest average Inception Score (2.327 across all datasets), indicating exceptional diversity and quality. This advances the field of AI-powered medical diagnosis. Future research will concentrate on model refining, dataset augmentation, and ethical considerations for efficiently implementing these advances into clinical practice.more » « less
-
Deep learning models have demonstrated significant advantages over traditional algorithms in image processing tasks like object detection. However, a large amount of data are needed to train such deep networks, which limits their application to tasks such as biometric recognition that require more training samples for each class (i.e., each individual). Researchers developing such complex systems rely on real biometric data, which raises privacy concerns and is restricted by the availability of extensive, varied datasets. This paper proposes a generative adversarial network (GAN)-based solution to produce training data (palm images) for improved biometric (palmprint-based) recognition systems. We investigate the performance of the most recent StyleGAN models in generating a thorough contactless palm image dataset for application in biometric research. Training on publicly available H-PolyU and IIDT palmprint databases, a total of 4839 images were generated using StyleGAN models. SIFT (Scale-Invariant Feature Transform) was used to find uniqueness and features at different sizes and angles, which showed a similarity score of 16.12% with the most recent StyleGAN3-based model. For the regions of interest (ROIs) in both the palm and finger, the average similarity scores were 17.85%. We present the Frechet Inception Distance (FID) of the proposed model, which achieved a 16.1 score, demonstrating significant performance. These results demonstrated StyleGAN as effective in producing unique synthetic biometric images.more » « less
An official website of the United States government

