skip to main content

Title: The Effect of Metadata on Scientific Literature Tagging: A Cross-Field Cross-Model Study
Due to the exponential growth of scientific publications on the Web, there is a pressing need to tag each paper with fine-grained topics so that researchers can track their interested fields of study rather than drowning in the whole literature. Scientific literature tagging is beyond a pure multi-label text classification task because papers on the Web are prevalently accompanied by metadata information such as venues, authors, and references, which may serve as additional signals to infer relevant tags. Although there have been studies making use of metadata in academic paper classification, their focus is often restricted to one or two scientific fields (e.g., computer science and biomedicine) and to one specific model. In this work, we systematically study the effect of metadata on scientific literature tagging across 19 fields. We select three representative multi-label classifiers (i.e., a bag-of-words model, a sequence-based model, and a pre-trained language model) and explore their performance change in scientific literature tagging when metadata are fed to the classifiers as additional features. We observe some ubiquitous patterns of metadata’s effects across all fields (e.g., venues are consistently beneficial to paper tagging in almost all cases), as well as some unique patterns in fields other than computer science and biomedicine, which are not explored in previous studies.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
WWW '23: Proceedings of the ACM Web Conference 2023
Page Range / eLocation ID:
1626 to 1637
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Recent advances in weakly supervised learn- ing enable training high-quality text classifiers by only providing a few user-provided seed words. Existing methods mainly use text data alone to generate pseudo-labels despite the fact that metadata information (e.g., author and timestamp) is widely available across various domains. Strong label indicators exist in the metadata and it has been long overlooked mainly due to the following challenges: (1) metadata is multi-typed, requiring systematic modeling of different types and their combinations, (2) metadata is noisy, some metadata entities (e.g., authors, venues) are more compelling label indicators than others. In this paper, we propose a novel framework, META, which goes beyond the existing paradigm and leverages metadata as an additional source of weak supervision. Specifically, we organize the text data and metadata together into a text-rich network and adopt network motifs to capture appropriate combinations of metadata. Based on seed words, we rank and filter motif instances to distill highly label-indicative ones as “seed motifs”, which provide additional weak supervision. Following a boot-strapping manner, we train the classifier and expand the seed words and seed motifs iteratively. Extensive experiments and case studies on real-world datasets demonstrate superior performance and significant advantages of leveraging metadata as weak supervision. 
    more » « less
  2. The arXiv has collected 1.5 million pre-print articles over 28 years, hosting literature from scientific fields including Physics, Mathematics, and Computer Science. Each pre-print features text, figures, authors, citations, categories, and other metadata. These rich, multi-modal features, combined with the natural graph structure—created by citation, affiliation, and co-authorship—makes the arXiv an exciting candidate for benchmarking next-generation models. Here we take the first necessary steps toward this goal, by providing a pipeline which standardizes and simplifies access to the arXiv’s publicly available data. We use this pipeline to extract and analyze a 6.7 million edge citation graph, with an 11 billion word cor- pus of full-text research articles. We present some baseline classification results, and motivate application of more exciting generative graph models. 
    more » « less
  3. null (Ed.)
    Multi-label text classification refers to the problem of assigning each given document its most relevant labels from a label set. Commonly, the metadata of the given documents and the hierarchy of the labels are available in real-world applications. However, most existing studies focus on only modeling the text information, with a few attempts to utilize either metadata or hierarchy signals, but not both of them. In this paper, we bridge the gap by formalizing the problem of metadata-aware text classification in a large label hierarchy (e.g., with tens of thousands of labels). To address this problem, we present the MATCH solution—an end-to-end framework that leverages both metadata and hierarchy information. To incorporate metadata, we pre-train the embeddings of text and metadata in the same space and also leverage the fully-connected attentions to capture the interrelations between them. To leverage the label hierarchy, we propose different ways to regularize the parameters and output probability of each child label by its parents. Extensive experiments on two massive text datasets with large-scale label hierarchies demonstrate the effectiveness of MATCH over the state-of-the-art deep learning baselines. 
    more » « less
  4. With the widespread use of machine learning systems in our daily lives, it is important to consider fairness as a basic requirement when designing these systems, especially when the systems make life-changing decisions, e.g., \textit{COMPAS} algorithm helps judges decide whether to release an offender. For another thing, due to the cheap but imperfect data collection methods, such as crowdsourcing and web crawling, label noise is ubiquitous, which unfortunately makes fairness-aware algorithms even more prejudiced than fairness-unaware ones, and thereby harmful. To tackle these problems, we provide general frameworks for learning fair classifiers with \textit{instance-dependent label noise}. For statistical fairness notions, we rewrite the classification risk and the fairness metric in terms of noisy data and thereby build robust classifiers. For the causality-based fairness notion, we exploit the internal causal structure of data to model the label noise and \textit{counterfactual fairness} simultaneously. Experimental results demonstrate the effectiveness of the proposed methods on real-world datasets with controllable synthetic label noise. 
    more » « less
  5. null (Ed.)
    Sensor metadata tagging, akin to the named entity recognition task, provides key contextual information (e.g., measurement type and location) about sensors for running smart building applications. Unfortunately, sensor metadata in different buildings often follows dis- tinct naming conventions. Therefore, learning a tagger currently requires extensive annotations on a per building basis. In this work, we propose a novel framework, SeNsER, which learns a sensor metadata tagger for a new building based on its raw metadata and some existing fully annotated building. It leverages the commonality between different buildings: At the character level, it employs bidirectional neural language models to capture the shared underlying patterns between two buildings and thus regularizes the feature learning process; At the word level, it leverages as features the k-mers existing in the fully annotated building. During inference, we further incorporate the information obtained from sources such as Wikipedia as prior knowledge. As a result, SeNsER shows promising results in extensive experiments on multiple real-world buildings. 
    more » « less