The return level estimation is an essential topic in studying spatial extremes for environmental data. Recently, various models for spatial extremes have emerged, which generally yield different estimates for return levels, given the same data. In the meantime, several approaches that obtain confidence intervals (CIs) for return levels have arisen, and the results from different approaches can also largely disagree. These pose natural questions for assessing different return level estimation methods and different CI derivation approaches. In this article, we compare an array of popular models for spatial extremes in return level estimation, as well as three approaches in CI derivation, through extensive Monte Carlo simulations. Our results show that in general, max‐stable models yield return level estimates with similar mean squared error, and the spatial generalized extreme value model also provides comparable estimates. The bootstrap method is recommended for max‐stable models to compute the CI, and the profile likelihood CI works well for spatial generalized extreme value. We also evaluate the methods for return level interpolation at unknown spatial locations and find that kriging of marginal return level estimates performs as well as max‐stable models.
- NSF-PAR ID:
- 10430127
- Publisher / Repository:
- MyGeoHUB
- Date Published:
- Edition / Version:
- 1.0
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Assessing models for estimation and methods for uncertainty quantification for spatial return levels
Abstract -
Large language models (LLMs) demonstrate impressive reasoning abilities, but translating reasoning into actions in the real world remains challenging. In particular, it is unclear how to complete a given task provably within a minimum number of interactions with the external environment, e.g., through an internal mechanism of reasoning. To this end, we propose the first framework with provable regret guarantees to orchestrate reasoning and acting, which we call “reason for future, act for now” (RAFA). Specifically, we design a prompt template for reasoning that learns from the memory buffer and plans a future trajectory over a long horizon (“reason for future”). At each step, the LLM agent takes the initial action of the planned trajectory (“act for now”), stores the collected feedback in the memory buffer, and reinvokes the reasoning routine to replan the future trajectory from the new state. The key idea is to cast reasoning in LLMs as learning and planning in Bayesian adaptive Markov decision processes (MDPs). Correspondingly, we prompt LLMs with the memory buffer to estimate the unknown environment (learning) and generate an optimal trajectory for multiple future steps that maximize a value function (planning). The learning and planning subroutines are performed in an “incontext” manner to emulate the actor-critic update for MDPs. Our theoretical analysis establishes a √T regret, while our experimental validation demonstrates superior empirical performance. Here, T denotes the number of online interactions.more » « less
-
AI is beginning to transform every aspect of society. With the dramatic increases in AI, K-12 students need to be prepared to understand AI. To succeed as the workers, creators, and innovators of the future, students must be introduced to core concepts of AI as early as elementary school. However, building a curriculum that introduces AI content to K-12 students present significant challenges, such as connecting to prior knowledge, and developing curricula that are meaningful for students and possible for teachers to teach. To lay the groundwork for elementary AI education, we conducted a qualitative study into the design of AI curricular approaches with elementary teachers and students. Interviews with elementary teachers and students suggests four design principles for creating an effective elementary AI curriculum to promote uptake by teachers. This example will present the co-designed curriculum with teachers (PRIMARYAI) and describe how these four elements were incorporated into real-world problem-based learning scenarios.more » « less
-
Abstract Impact assessment is an important and cost‐effective tool for assisting in the identification and prioritization of invasive alien species. With the number of alien and invasive alien species expected to increase, reliance on impact assessment tools for the identification of species that pose the greatest threats will continue to grow. Given the importance of such assessments for management and resource allocation, it is critical to understand the uncertainty involved and what effect this may have on the outcome. Using an uncertainty typology and insects as a model taxon, we identified and classified the causes and types of uncertainty when performing impact assessments on alien species. We assessed 100 alien insect species across two rounds of assessments with each species independently assessed by two assessors. Agreement between assessors was relatively low for all three impact classification components (mechanism, severity, and confidence) after the first round of assessments. For the second round, we revised guidelines and gave assessors access to each other’s assessments which improved agreement by between 20% and 30% for impact mechanism, severity, and confidence. Of the 12 potential reasons for assessment discrepancies identified a priori, 11 were found to occur. The most frequent causes (and types) of uncertainty (i.e., differences between assessment outcomes for the same species) were as follows: incomplete information searches (systematic error), unclear mechanism and/or extent of impact (subjective judgment due to a lack of knowledge), and limitations of the assessment framework (context dependence). In response to these findings, we identify actions that may reduce uncertainty in the impact assessment process, particularly for assessing speciose taxa with diverse life histories such as Insects. Evidence of environmental impact was available for most insect species, and (of the non‐random original subset of species assessed) 14 of those with evidence were identified as high impact species (with either major or massive impact). Although uncertainty in risk assessment, including impact assessments, can never be eliminated, identifying, and communicating its cause and variety is a first step toward its reduction and a more reliable assessment outcome, regardless of the taxa being assessed.
-
In situ imageomics is a new approach to study ecological, biological and evolutionary systems wherein large image and video data sets are captured in the wild and machine learning methods are used to infer biological traits of individual organisms, animal social groups, species, and even whole ecosystems. Monitoring biological traits over large spaces and long periods of time could enable new, data-driven approaches to wildlife conservation, biodiversity, and sustainable ecosystem management. However, to accurately infer biological traits, machine learning methods for images require voluminous and high quality data. Adaptive, data-driven approaches are hamstrung by the speed at which data can be captured and processed. Camera traps and unmanned aerial vehicles (UAVs) produce voluminous data, but lose track of individuals over large areas, fail to capture social dynamics, and waste time and storage on images with poor lighting and view angles. In this vision paper, we make the case for a research agenda for in situ imageomics that depends on significant advances in autonomic and self-aware computing. Precisely, we seek autonomous data collection that manages camera angles, aircraft positioning, conflicting actions for multiple traits of interest, energy availability, and cost factors. Given the tools to detect object and identify individuals, we propose a research challenge: Which optimization model should the data collection system employ to accurately identify, characterize, and draw inferences from biological traits while respecting a budget? Using zebra and giraffe behavioral data collected over three weeks at the Mpala Research Centre in Laikipia County, Kenya, we quantify the volume and quality of data collected using existing approaches. Our proposed autonomic navigation policy for in situ imageomics collection has an F1 score of 82% compared to an expert pilot, and provides greater safety and consistency, suggesting great potential for state-of-the-art autonomic approaches if they can be scaled up to fully address the problem.more » « less