skip to main content


Title: Principles for AI Education for Elementary Grades Students
AI is beginning to transform every aspect of society. With the dramatic increases in AI, K-12 students need to be prepared to understand AI. To succeed as the workers, creators, and innovators of the future, students must be introduced to core concepts of AI as early as elementary school. However, building a curriculum that introduces AI content to K-12 students present significant challenges, such as connecting to prior knowledge, and developing curricula that are meaningful for students and possible for teachers to teach. To lay the groundwork for elementary AI education, we conducted a qualitative study into the design of AI curricular approaches with elementary teachers and students. Interviews with elementary teachers and students suggests four design principles for creating an effective elementary AI curriculum to promote uptake by teachers. This example will present the co-designed curriculum with teachers (PRIMARYAI) and describe how these four elements were incorporated into real-world problem-based learning scenarios.  more » « less
Award ID(s):
1934153 2147811
NSF-PAR ID:
10352385
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
27th ACM Conference on Innovation and Technology in Computer Science Education
Volume:
2
Page Range / eLocation ID:
627 to 627
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The emergence of increasingly powerful AI technologies calls for the design and development of K-12 AI literacy curricula that can support students who will be entering a profoundly changed labor market. However, developing, implementing, and scaling AI literacy curricula poses significant challenges. It will be essential to develop a robust, evidence-based AI education research foundation that can inform AI literacy curriculum development. Unlike K-12 science and mathematics education, there is not currently a research foundation for K-12 AI education. In this article we provide a component-based definition of AI literacy, present the need for implementing AI literacy education across all grade bands, and argue for the creation of research programs across four areas of AI education: (1) K-12 AI Learning & Technology; (2) K-12 AI Education Integration into STEM, Language Arts, and Social Science Education; (3) K-12 AI Professional Development for Teachers and Administrators; and (4) K-12 AI Assessment. 
    more » « less
  2. The dearth of women and people of color in the field of computer science is a well-documented phenomenon. Following Obama's 2016 declaration of the need for a nationwide CS for All movement in the US, educators, school districts, states and the US-based National Science Foundation have responded with an explosion of activity directed at developing computer science learning opportunities in K-12 settings. A major component of this effort is the creation of equitable CS learning opportunities for underrepresented populations. As a result, there exists a strong need for educational research on the development of equity-based theory and practice in CS education. This poster session reports on a work-in-progress study that uses a case study approach to engage twenty in-service elementary school teachers in reflecting on issues of equity in CS education as part of a three-day CS professional development workshop. Our work is unfolding in the context of a four-year university/district research practice partnership in a mid-sized city in the Northeastern United States. Teachers in our project are working to co-design integrated CS curriculum units for K-5 classrooms. We developed four case studies, drawn from the first year of our project, that highlight equity challenges teachers faced in the classroom when implementing the CS lessons. The case studies follow the "Teacher Moments" template created by the Teaching Systems Lab in Open Learning at MIT. The case study activity is meant to deepen reflection and discussion on how to create equitable learning opportunities for elementary school students. We present preliminary findings. 
    more » « less
  3. There is growing awareness of the central role that artificial intelligence (AI) plays now and in children's futures. This has led to increasing interest in engaging K-12 students in AI education to promote their understanding of AI concepts and practices. Leveraging principles from problem-based pedagogies and game-based learning, our approach integrates AI education into a set of unplugged activities and a game-based learning environment. In this work, we describe outcomes from our efforts to co design problem-based AI curriculum with elementary school teachers. 
    more » « less
  4. Massachusetts defined K-12 Digital Literacy/Computer Science (DLCS) standards in 2016 and developed a 5-12 teacher licensure process, expecting K-4 teachers to be capable of teaching to the standards under their elementary license. An NSF CSforAll planning grant led to the establishment of an NSF 4-year ResearchPractice Partnership (RPP) of district and school administrators, teachers, university researchers, and external evaluators in 2018. The RPP focused on the 33 K-5 serving schools to engage all students in integrated CS/CT teaching and learning and to create a cadre of skilled and confident elementary classroom teachers ready to support their students in learning CS/CT concepts and practices. The pandemic exacerbated barriers and inequities across the district, which serves over 25,000 diverse students (9.7% white/nonHispanic, 83.7% high needs). Having observed a lack of awareness and expertise among many K-5 teachers for implementing CS/CT content and practices and seeing barriers to equitable CS/CT teaching and learning, the RPP designed an iterative, teacher-led, co-design of curriculum supported by equity-focused and embedded professional learning. This experience report describes how we refined our strategies for curriculum development and diffusion, professional learning, and importantly, our commitment to addressing diversity, equity, and inclusion beyond just reaching all students. The RPP broadened its focus on understanding race and equity to empower students to understand how technology affects their identities and to equip them to critically participate in the creation and use of technology 
    more » « less
  5. This fundamental research in pre-college education engineering study investigates the ways in which elementary school students and their teacher balance the tradeoffs in engineering design. STEM education reforms promote the engagement of K-12 students in the epistemic practices of disciplinary experts to teach content.1,2,3 This emphasis on practices is a paradigm shift that requires both extensive professional development and research to learn about the ways in which students and teacher learn about and participate in these practices. Balancing tradeoffs is an important practice in engineering but most often in classroom curricula it is embedded in the concept of iteration1,4; however, improving a design is not always the same as balancing trade-offs.1 Optimizing a multivariate problem requires students to engage in a number of engineering practices, like considering multiple solution, making tradeoffs between criteria and constraints, applying math and science knowledge to problem solving, constructing models, making evidence-based decisions, and assessing the implications of solutions5. The ways in which teachers and students collectively balance these tradeoffs in a design has been understudied1. Our primary research questions are, “How do teachers and students make decisions about making tradeoffs between criteria and constraints” and “How do experiences in teacher workshops affect the ways they implement engineering projects in their classes.” We take an ethnographic perspective to investigate these phenomena, and collected video data, field notes, student journals, and semi-structured interviews of eight elementary teachers in a workshop and similar data from two of the workshop teachers’ classes as they implemented the curriculum they learned in the workshop. Our analyses focus on the disciplinary practices teachers and students use to make decisions for balancing tradeoffs, how they are supported (or impeded) by teachers, and how they justify these decisions. Similarly, we compared two of the teachers wearing their “student hat” in the workshop as well as their “teacher hat” in the classroom5. Our analyses suggest three significant findings. First, teachers and students tended to focus on one criterion (e.g. cost, performance) and had few discussions about trying to minimize cost and maximize performance. Second, curriculum design significantly impacts the choices students make. Using two examples, we will show the impact of weighting criteria differently on the design strategies teachers and students make. Last, we noted most of the feedback given was related to managing classroom activity rather than supporting students’ designs. Implications of this study are relevant to both engineering educators and engineering curriculum developers. 
    more » « less