skip to main content


Title: Weak and strong π interactions between two monomers—assessed with local vibrational mode theory
We introduce in this work a unique parameter for the quantitative assessment of the intrinsic strength of the π interaction between two monomers forming a complex. The new parameter is a local intermonomer stretching force constant, based on the local mode theory, originally developed by Konkoli and Cremer, and derived from the set of nine possible intermonomer normal vibrational modes. The new local force constant was applied to a diverse set of more than 70 molecular complexes, which was divided into four groups. Group 1 includes atoms, ions, and small molecules interacting with benzene and substituted benzenes. Group 2 includes transition metal hydrides and oxides interacting with benzene while Group 3 involves ferrocenes, chromocenes, and titanium sandwich compounds. Group 4 presents an extension to oxygen π–hole interactions in comparison with in-plane hydrogen bonding. We found that the strength of the π interactions in these diverse molecular complexes can vary from weak interactions with predominantly electrostatic character, found, e.g., for argon–benzene complexes, to strong interactions with a substantial covalent nature, found, e.g., for ferrocenes; all being seamlessly described and compared with the new intermonomer local mode force constant, which also outperforms other descriptors such as an averaged force constant or a force constant guided by the electron density bond paths. We hope that our findings will inspire the community to apply the new parameter also to other intermonomer π interactions, enriching in this way the broad field of organometallic chemistry with a new efficient assessment tool.  more » « less
Award ID(s):
2102461
NSF-PAR ID:
10430209
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Canadian Journal of Chemistry
ISSN:
0008-4042
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Density functional theory (DFT) calculations were used to examine the binding strength of one and two methane molecule(s) with graphene (62 and 186 carbon atoms) and model systems of aromatic hydrocarbons (benzene, pyrene, and coronene). We explored different possibilities of binding modes of methane such as one, two, and three C-H interacting with small π-systems. Two methane molecules were considered to bind from the same as well as opposite sides of the plane of benzene and other πsystems including graphene models. Our results show that methane molecule prefers to bind with three C-H…π interactions with all the π-systems except benzene. The preference of tripod configuration of methane on the surface of graphene systems strongly agrees with the neutron diffraction experiment of methane on graphitized carbon black. The binding strength is almost doubled by increasing the number of methane molecules from one to two. Importantly, two methane molecules prefer to bind on the same side rather than opposite sides of the plane of graphene due to stabilizing CH…HC interactions between them in addition to six CH…π interactions. Interestingly, binding strength contributions from CH…HC interactions (approx. 0.4–0.5 kcal/mol) of two methane molecules on the surface are analogous to methane dimer complex free from the surface of graphene. C-H stretching frequency shifts, bond lengths, and binding distances support the presence of CH…HC interactions between two methane molecules. Structures of complexes, binding energies, and C-H stretching frequency shifts agree with available experimental data 
    more » « less
  2. We present a comprehensive investigation on the different role of CO in carboxy- neuroglobin i) as ligand of the heme group in the active site forming a bond with the heme iron and ii) dissociated from the heme group but still trapped inside the active site, focusing on two specific orientations, one with CO perpendicular to the plane defined by the distal histidine of the enzyme (form A) and one with CO located parallel to that plane (form B). Our study includes wild type carboxy-neuroglobin and nine known protein mutations. Considering that the distal histidine interacting with the heme group can adapt two different tautomeric forms and the two possible orientations of the dissociated CO, a total of 36 protein systems were analyzed in this study. Fully optimized geometries and vibrational frequencies were calculated at the QM/MM level, followed by the local mode analysis, to decode CO bond properties. The intrinsic bond strengths derived from the local mode analysis, complemented with NBO and QTAIM data, reveal that the strength of the CO bond, in the hexacoordinate (where CO is a ligand of the heme group) and pentacoordinate (where CO is dissociated from the heme group) scenarios, is dominated by through bond and through space charge transfer between CO and Fe, fine-tuned by electrostatic and dispersion interactions with the side chain amino acids in the distal heme pocket. Suggestions are made as to advise on how protein modifications can influence the molecular properties of the coordinated or dissociated CO, which could serve the fine-tuning of existing and the design of new neuroglobin models with specific FeC and CO bond strengths. 
    more » « less
  3. This data set for the manuscript entitled "Design of Peptides that Fold and Self-Assemble on Graphite" includes all files needed to run and analyze the simulations described in the this manuscript in the molecular dynamics software NAMD, as well as the output of the simulations. The files are organized into directories corresponding to the figures of the main text and supporting information. They include molecular model structure files (NAMD psf or Amber prmtop format), force field parameter files (in CHARMM format), initial atomic coordinates (pdb format), NAMD configuration files, Colvars configuration files, NAMD log files, and NAMD output including restart files (in binary NAMD format) and trajectories in dcd format (downsampled to 10 ns per frame). Analysis is controlled by shell scripts (Bash-compatible) that call VMD Tcl scripts or python scripts. These scripts and their output are also included.

    Version: 2.0

    Changes versus version 1.0 are the addition of the free energy of folding, adsorption, and pairing calculations (Sim_Figure-7) and shifting of the figure numbers to accommodate this addition.


    Conventions Used in These Files
    ===============================

    Structure Files
    ----------------
    - graph_*.psf or sol_*.psf (original NAMD (XPLOR?) format psf file including atom details (type, charge, mass), as well as definitions of bonds, angles, dihedrals, and impropers for each dipeptide.)

    - graph_*.pdb or sol_*.pdb (initial coordinates before equilibration)
    - repart_*.psf (same as the above psf files, but the masses of non-water hydrogen atoms have been repartitioned by VMD script repartitionMass.tcl)
    - freeTop_*.pdb (same as the above pdb files, but the carbons of the lower graphene layer have been placed at a single z value and marked for restraints in NAMD)
    - amber_*.prmtop (combined topology and parameter files for Amber force field simulations)
    - repart_amber_*.prmtop (same as the above prmtop files, but the masses of non-water hydrogen atoms have been repartitioned by ParmEd)

    Force Field Parameters
    ----------------------
    CHARMM format parameter files:
    - par_all36m_prot.prm (CHARMM36m FF for proteins)
    - par_all36_cgenff_no_nbfix.prm (CGenFF v4.4 for graphene) The NBFIX parameters are commented out since they are only needed for aromatic halogens and we use only the CG2R61 type for graphene.
    - toppar_water_ions_prot_cgenff.str (CHARMM water and ions with NBFIX parameters needed for protein and CGenFF included and others commented out)

    Template NAMD Configuration Files
    ---------------------------------
    These contain the most commonly used simulation parameters. They are called by the other NAMD configuration files (which are in the namd/ subdirectory):
    - template_min.namd (minimization)
    - template_eq.namd (NPT equilibration with lower graphene fixed)
    - template_abf.namd (for adaptive biasing force)

    Minimization
    -------------
    - namd/min_*.0.namd

    Equilibration
    -------------
    - namd/eq_*.0.namd

    Adaptive biasing force calculations
    -----------------------------------
    - namd/eabfZRest7_graph_chp1404.0.namd
    - namd/eabfZRest7_graph_chp1404.1.namd (continuation of eabfZRest7_graph_chp1404.0.namd)

    Log Files
    ---------
    For each NAMD configuration file given in the last two sections, there is a log file with the same prefix, which gives the text output of NAMD. For instance, the output of namd/eabfZRest7_graph_chp1404.0.namd is eabfZRest7_graph_chp1404.0.log.

    Simulation Output
    -----------------
    The simulation output files (which match the names of the NAMD configuration files) are in the output/ directory. Files with the extensions .coor, .vel, and .xsc are coordinates in NAMD binary format, velocities in NAMD binary format, and extended system information (including cell size) in text format. Files with the extension .dcd give the trajectory of the atomic coorinates over time (and also include system cell information). Due to storage limitations, large DCD files have been omitted or replaced with new DCD files having the prefix stride50_ including only every 50 frames. The time between frames in these files is 50 * 50000 steps/frame * 4 fs/step = 10 ns. The system cell trajectory is also included for the NPT runs are output/eq_*.xst.

    Scripts
    -------
    Files with the .sh extension can be found throughout. These usually provide the highest level control for submission of simulations and analysis. Look to these as a guide to what is happening. If there are scripts with step1_*.sh and step2_*.sh, they are intended to be run in order, with step1_*.sh first.


    CONTENTS
    ========

    The directory contents are as follows. The directories Sim_Figure-1 and Sim_Figure-8 include README.txt files that describe the files and naming conventions used throughout this data set.

    Sim_Figure-1: Simulations of N-acetylated C-amidated amino acids (Ac-X-NHMe) at the graphite–water interface.

    Sim_Figure-2: Simulations of different peptide designs (including acyclic, disulfide cyclized, and N-to-C cyclized) at the graphite–water interface.

    Sim_Figure-3: MM-GBSA calculations of different peptide sequences for a folded conformation and 5 misfolded/unfolded conformations.

    Sim_Figure-4: Simulation of four peptide molecules with the sequence cyc(GTGSGTG-GPGG-GCGTGTG-SGPG) at the graphite–water interface at 370 K.

    Sim_Figure-5: Simulation of four peptide molecules with the sequence cyc(GTGSGTG-GPGG-GCGTGTG-SGPG) at the graphite–water interface at 295 K.

    Sim_Figure-5_replica: Temperature replica exchange molecular dynamics simulations for the peptide cyc(GTGSGTG-GPGG-GCGTGTG-SGPG) with 20 replicas for temperatures from 295 to 454 K.

    Sim_Figure-6: Simulation of the peptide molecule cyc(GTGSGTG-GPGG-GCGTGTG-SGPG) in free solution (no graphite).

    Sim_Figure-7: Free energy calculations for folding, adsorption, and pairing for the peptide CHP1404 (sequence: cyc(GTGSGTG-GPGG-GCGTGTG-SGPG)). For folding, we calculate the PMF as function of RMSD by replica-exchange umbrella sampling (in the subdirectory Folding_CHP1404_Graphene/). We make the same calculation in solution, which required 3 seperate replica-exchange umbrella sampling calculations (in the subdirectory Folding_CHP1404_Solution/). Both PMF of RMSD calculations for the scrambled peptide are in Folding_scram1404/. For adsorption, calculation of the PMF for the orientational restraints and the calculation of the PMF along z (the distance between the graphene sheet and the center of mass of the peptide) are in Adsorption_CHP1404/ and Adsorption_scram1404/. The actual calculation of the free energy is done by a shell script ("doRestraintEnergyError.sh") in the 1_free_energy/ subsubdirectory. Processing of the PMFs must be done first in the 0_pmf/ subsubdirectory. Finally, files for free energy calculations of pair formation for CHP1404 are found in the Pair/ subdirectory.

    Sim_Figure-8: Simulation of four peptide molecules with the sequence cyc(GTGSGTG-GPGG-GCGTGTG-SGPG) where the peptides are far above the graphene–water interface in the initial configuration.

    Sim_Figure-9: Two replicates of a simulation of nine peptide molecules with the sequence cyc(GTGSGTG-GPGG-GCGTGTG-SGPG) at the graphite–water interface at 370 K.

    Sim_Figure-9_scrambled: Two replicates of a simulation of nine peptide molecules with the control sequence cyc(GGTPTTGGGGGGSGGPSGTGGC) at the graphite–water interface at 370 K.

    Sim_Figure-10: Adaptive biasing for calculation of the free energy of the folded peptide as a function of the angle between its long axis and the zigzag directions of the underlying graphene sheet.

     

    This material is based upon work supported by the US National Science Foundation under grant no. DMR-1945589. A majority of the computing for this project was performed on the Beocat Research Cluster at Kansas State University, which is funded in part by NSF grants CHE-1726332, CNS-1006860, EPS-1006860, and EPS-0919443. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1548562, through allocation BIO200030. 
    more » « less
  4. We systematically investigated iodine–metal and iodine–iodine bonding in van Koten’s pincer complex and 19 modifications changing substituents and/or the transition metal with a PBE0–D3(BJ)/aug–cc–pVTZ/PP(M,I) model chemistry. As a novel tool for the quantitative assessment of the iodine–metal and iodine–iodine bond strength in these complexes we used the local mode analysis, originally introduced by Konkoli and Cremer, complemented with NBO and Bader’s QTAIM analyses. Our study reveals the major electronic effects in the catalytic activity of the M–I–I non-classical three-center bond of the pincer complex, which is involved in the oxidative addition of molecular iodine I2 to the metal center. According to our investigations the charge transfer from the metal to the σ* antibonding orbital of the I–I bond changes the 3c–4e character of the M–I–I three-center bond, which leads to weakening of the iodine I–I bond and strengthening of the metal–iodine M–I bond, facilitating in this way the oxidative addition of I2 to the metal. The charge transfer can be systematically modified by substitution at different places of the pincer complex and by different transition metals, changing the strength of both the M–I and the I2 bonds. We also modeled for the original pincer complex how solvents with different polarity influence the 3c–4e character of the M–I–I bond. Our results provide new guidelines for the design of pincer complexes with specific iodine–metal bond strengths and introduce the local vibrational mode analysis as an efficient tool to assess the bond strength in complexes. 
    more » « less
  5. Abstract

    Modern vibrational spectroscopy is more than just an analytical tool. Information about the electronic structure of a molecule, the strength of its bonds, and its conformational flexibility is encoded in the normal vibrational modes. On the other hand, normal vibrational modes are generally delocalized, which hinders the direct access to this information, attainable only via local vibration modes and associated local properties. Konkoli and Cremer provided an ingenious solution to this problem by deriving local vibrational modes from the fundamental normal modes, obtained in the harmonic approximation of the potential, via mass‐decoupled Euler–Lagrange equations. This review gives a general introduction into the local vibrational mode theory of Konkoli and Cremer, elucidating how this theory unifies earlier attempts to obtain easy to interpret chemical information from vibrational spectroscopy: (a) the local mode theory furnishes bond strength descriptors derived from force constant matrices with a physical basis, (b) provides the highly sought after extension of the Badger rule to polyatomic molecules, (c) and offers a simpler way to derive localized vibrations compared to the complex route via overtone spectroscopy. Successful applications are presented, including a new measure of bond strength, a new detailed analysis of infrared/Raman spectra, and the recent extension to periodic systems, opening a new avenue for the characterization of bonding in crystals. At the end of this review the LMODEA software is introduced, which performs the local mode analysis (with minimal computational costs) after a harmonic vibrational frequency calculation optionally using measured frequencies as additional input.

    This article is categorized under:

    Structure and Mechanism > Molecular Structures

    Theoretical and Physical Chemistry > Spectroscopy

    Software > Quantum Chemistry

    Electronic Structure Theory > Ab Initio Electronic Structure Methods

     
    more » « less