skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Maximal Functions, Littlewood–Paley Theory, Riesz Transforms and Atomic Decomposition in the Multi-parameter Flag Setting
In this paper, we develop via real variable methods various characterisations of the Hardy spaces in the multi-parameter flag setting. These characterisations include those via, the non-tangential and radial maximal function, the Littlewood–Paley square function and area integral, Riesz transforms and the atomic decomposition in the multi-parameter flag setting. The novel ingredients in this paper include (1) establishing appropriate discrete Calderón reproducing formulae in the flag setting and a version of the Plancherel–Pólya inequalities for flag quadratic forms; (2) introducing the maximal function and area function via flag Poisson kernels and flag version of harmonic functions; (3) developing an atomic decomposition via the finite speed propagation and area function in terms of flag heat semigroups. As a consequence of these real variable methods, we obtain the full characterisations of the multi-parameter Hardy space with the flag structure.  more » « less
Award ID(s):
1800057
PAR ID:
10430218
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Memoirs of the American Mathematical Society
Volume:
279
Issue:
1373
ISSN:
0065-9266
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A new proof is given of the atomic decomposition of Hardy spaces H^p, 0< p≤1, in the classical setting on R^n. The new method can be used to establish atomic decomposition of maximal Hardy spaces in general and nonclassical settings. 
    more » « less
  2. null (Ed.)
    Abstract We extend the Lebesgue decomposition of positive measures with respect to Lebesgue measure on the complex unit circle to the non-commutative (NC) multi-variable setting of (positive) NC measures. These are positive linear functionals on a certain self-adjoint subspace of the Cuntz–Toeplitz $$C^{\ast }-$$algebra, the $$C^{\ast }-$$algebra of the left creation operators on the full Fock space. This theory is fundamentally connected to the representation theory of the Cuntz and Cuntz–Toeplitz $$C^{\ast }-$$algebras; any *−representation of the Cuntz–Toeplitz $$C^{\ast }-$$algebra is obtained (up to unitary equivalence), by applying a Gelfand–Naimark–Segal construction to a positive NC measure. Our approach combines the theory of Lebesgue decomposition of sesquilinear forms in Hilbert space, Lebesgue decomposition of row isometries, free semigroup algebra theory, NC reproducing kernel Hilbert space theory, and NC Hardy space theory. 
    more » « less
  3. We study random permutations corresponding to pipe dreams. Our main model is motivated by the Grothendieck polynomials with parameter ß = 1 arising in the K-theory of the flag variety. The probability weight of a permutation is proportional to the principal specialization (setting all variables to 1) of its Grothendieck polyno- mial. By mapping this random permutation to a version of TASEP (Totally Asymmetric Simple Exclusion Process, we describe the limiting permuton and fluctuations around it as the order n of the permutation grows to infinity. The fluctuations are of order n$ and have the Tracy-Widom GUE distribution, which places this algebraic (K-theoretic) model into the Kardar-Parisi-Zhang universality class. Inspired by Stanley's question for the maximal value of principal specializations of Schubert polynomials, we resolve the analogous question for B = 1 Grothendieck polynomials, and provide bounds for general B. This analysis uses a correspondence with the free fermion six-vertex model, and the frozen boundary of the Aztec diamond. 
    more » « less
  4. We study random permutations arising from reduced pipe dreams. Our main model is motivated by Grothendieck polynomials with parameter $$\beta=1$$ arising in K-theory of the flag variety. The probability weight of a permutation is proportional to the principal specialization (setting all variables to 1) of the corresponding Grothendieck polynomial. By mapping this random permutation to a version of TASEP (Totally Asymmetric Simple Exclusion Process), we describe the limiting permuton and fluctuations around it as the order $$n$$ of the permutation grows to infinity. The fluctuations are of order $$n^{\frac13}$$ and have the Tracy-Widom GUE distribution, which places this algebraic (K-theoretic) model into the Kardar-Parisi-Zhang universality class. We also investigate non-reduced pipe dreams and make progress on a recent open problem on the asymptotic number of inversions of the resulting permutation. Inspired by Stanley's question for the maximal value of principal specializations of Schubert polynomials, we resolve the analogous question for $$\beta=1$$ Grothendieck polynomials, and provide bounds for general $$\beta$$. 
    more » « less
  5. In this paper, we propose a method to repurpose the multi-user MIMO downlink transmission for joint wireless communication and imaging. The key idea is to introduce the concept of virtual users in the communication coverage area and use the existing MUMIMO beamforming methods to jointly beamform towards real and virtual users. The virtual users are placed to complement the locations of actual users, with the objective to illuminate the scene as uniformly as possible. We study a single-parameter tradeoff, introduced by a power split parameter between real and virtual users. We demonstrate via simulated examples that the virtual user concept is effective in providing a scalable imaging and communications performance tradeoff for cases where the real users are clustered in small geographical areas. 
    more » « less