We study random permutations arising from reduced pipe dreams. Our main model is motivated by Grothendieck polynomials with parameter $$\beta=1$$ arising in K-theory of the flag variety. The probability weight of a permutation is proportional to the principal specialization (setting all variables to 1) of the corresponding Grothendieck polynomial. By mapping this random permutation to a version of TASEP (Totally Asymmetric Simple Exclusion Process), we describe the limiting permuton and fluctuations around it as the order $$n$$ of the permutation grows to infinity. The fluctuations are of order $$n^{\frac13}$$ and have the Tracy-Widom GUE distribution, which places this algebraic (K-theoretic) model into the Kardar-Parisi-Zhang universality class. We also investigate non-reduced pipe dreams and make progress on a recent open problem on the asymptotic number of inversions of the resulting permutation. Inspired by Stanley's question for the maximal value of principal specializations of Schubert polynomials, we resolve the analogous question for $$\beta=1$$ Grothendieck polynomials, and provide bounds for general $$\beta$$.
more »
« less
This content will become publicly available on June 1, 2026
Grothendieck Shenanigans: Permutons from pipe dreams via integrable probability
We study random permutations corresponding to pipe dreams. Our main model is motivated by the Grothendieck polynomials with parameter ß = 1 arising in the K-theory of the flag variety. The probability weight of a permutation is proportional to the principal specialization (setting all variables to 1) of its Grothendieck polyno- mial. By mapping this random permutation to a version of TASEP (Totally Asymmetric Simple Exclusion Process, we describe the limiting permuton and fluctuations around it as the order n of the permutation grows to infinity. The fluctuations are of order n$ and have the Tracy-Widom GUE distribution, which places this algebraic (K-theoretic) model into the Kardar-Parisi-Zhang universality class. Inspired by Stanley's question for the maximal value of principal specializations of Schubert polynomials, we resolve the analogous question for B = 1 Grothendieck polynomials, and provide bounds for general B. This analysis uses a correspondence with the free fermion six-vertex model, and the frozen boundary of the Aztec diamond.
more »
« less
- Award ID(s):
- 2153869
- PAR ID:
- 10611263
- Publisher / Repository:
- FPSAC Proceedings
- Date Published:
- Format(s):
- Medium: X
- Location:
- Sapporo, Japan
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study probability measures on partitions based on symmetric Grothendieck polynomials. These deformations of Schur polynomials introduced in the K-theory of Grassmannians share many common properties. Our Grothendieck measures are analogs of the Schur measures on partitions introduced by Okounkov (Sel Math 7(1):57–81, 2001). Despite the similarity of determinantal formulas for the probability weights of Schur and Grothendieck measures, we demonstrate that Grothendieck measures are not determinantal point processes. This question is related to the principal minor assignment problem in algebraic geometry, and we employ a determinantal test first obtained by Nanson in 1897 for the 4 × 4 problem. We also propose a procedure for getting Nanson-like determinantal tests for matrices of any size n ≥ 4, which appear new for n ≥ 5. By placing the Grothendieck measures into a new framework of tilted biorthogonal ensembles generalizing a rich class of determinantal processes introduced by Borodin (Nucl Phys B 536:704–732, 1998), we identify Grothendieck random partitions as a cross-section of a Schur process, a determinantal process in two dimensions. This identification expresses the correlation functions of Grothendieck measures through sums of Fredholm determinants, which are not immediately suitable for asymptotic analysis. A more direct approach allows us to obtain a limit shape result for the Grothendieck random partitions. The limit shape curve is not particularly explicit as it arises as a cross-section of the limit shape surface for the Schur process. The gradient of this surface is expressed through the argument of a complex root of a cubic equation.more » « less
-
We introduce families of two-parameter multivariate polynomials indexed by pairs of partitions $v,w$$ -- {\it biaxial double} $$(\beta,q)$$-{\it Grothendieck polynomials} -- which specialize at $$q=0$ and $v=1$ to double $$\beta$$-Grothendieck polynomials from torus-equivariant connective K-theory. Initially defined recursively via divided difference operators, our main result is that these new polynomials arise as partition functions of solvable lattice models. Moreover, the associated quantum group of the solvable model for polynomials in $$n$$ pairs of variables is a Drinfeld twist of the $$U_q(\widehat{\mathfrak{sl}}_{n+1})$$ $$R$$-matrix. By leveraging the resulting Yang-Baxter equations of the lattice model, we show that these polynomials simultaneously generalize double $$\beta$$-Grothendieck polynomials and dual double $$\beta$$-Grothendieck polynomials for arbitrary permutations. We then use properties of the model and Yang-Baxter equations to reprove Fomin-Kirillov's Cauchy identity for $$\beta$$-Grothendieck polynomials, generalize it to a new Cauchy identity for biaxial double $$\beta$$-Grothendieck polynomials, and prove a new branching rule for double $$\beta$$-Grothendieck polynomials.more » « less
-
Matrix Schubert varieties are affine varieties arising in the Schubert calculus of the complete flag variety. We give a formula for the Castelnuovo–Mumford regularity of matrix Schubert varieties, answering a question of Jenna Rajchgot. We follow her proposed strategy of studying the highest-degree homogeneous parts of Grothendieck polynomials, which we call Castelnuovo–Mumford polynomials. In addition to the regularity formula, we obtain formulas for the degrees of all Castelnuovo–Mumford polynomials and for their leading terms, as well as a complete description of when two Castelnuovo–Mumford polynomials agree up to scalar multiple. The degree of the Grothendieck polynomial is a new permutation statistic which we call the Rajchgot index; we develop the properties of Rajchgot index and relate it to major index and to weak order.more » « less
-
NA (Ed.)We give a Chevalley formula for an arbitrary weight for the torus-equivariant K-group of semi-infinite flag manifolds, which is expressed in terms of the quantum alcove model. As an application, we prove the Chevalley formula for an anti-dominant fundamental weight for the (small) torus-equivariant quantum K-theory QK_{T}(G/B) of a (finite-dimensional) flag manifold G/B; this has been a longstanding conjecture about the multiplicative structure of QK_{T}(G/B). In type A_{n-1}, we prove that the so-called quantum Grothendieck polynomials indeed represent (opposite) Schubert classes in the (non-equivariant) quantum K-theory QK(SL_{n}/B); we also obtain very explicit information about the coefficients in the respective Chevalley formula.more » « less
An official website of the United States government
