skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Median Regularity and Honest Inference
We introduce a new notion of regularity of an estimator called median regularity. We prove that uniformly valid (honest) inference for a functional is possible if and only if there exists a median regular estimator of that functional. To our knowledge, such a notion of regularity that is necessary for uniformly valid inference is unavailable in the literature.  more » « less
Award ID(s):
2113684 1763734
PAR ID:
10430446
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Biometrika
ISSN:
0006-3444
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We develop and analyse the HulC, an intuitive and general method for constructing confidence sets using the convex hull of estimates constructed from subsets of the data. Unlike classical methods which are based on estimating the (limiting) distribution of an estimator, the HulC is often simpler to use and effectively bypasses this step. In comparison to the bootstrap, the HulC requires fewer regularity conditions and succeeds in many examples where the bootstrap provably fails. Unlike sub-sampling, the HulC does not require knowledge of the rate of convergence of the estimators on which it is based. The validity of the HulC requires knowledge of the (asymptotic) median bias of the estimators. We further analyse a variant of our basic method, called the Adaptive HulC, which is fully data-driven and estimates the median bias using sub-sampling. We discuss these methods in the context of several challenging inferential problems which arise in parametric, semi-parametric, and non-parametric inference. Although our focus is on validity under weak regularity conditions, we also provide some general results on the width of the HulC confidence sets, showing that in many cases the HulC confidence sets have near-optimal width. 
    more » « less
  2. We propose a general method for constructing confidence sets and hypothesis tests that have finite-sample guarantees without regularity conditions. We refer to such procedures as “universal.” The method is very simple and is based on a modified version of the usual likelihood-ratio statistic that we call “the split likelihood-ratio test” (split LRT) statistic. The (limiting) null distribution of the classical likelihood-ratio statistic is often intractable when used to test composite null hypotheses in irregular statistical models. Our method is especially appealing for statistical inference in these complex setups. The method we suggest works for any parametric model and also for some nonparametric models, as long as computing a maximum-likelihood estimator (MLE) is feasible under the null. Canonical examples arise in mixture modeling and shape-constrained inference, for which constructing tests and confidence sets has been notoriously difficult. We also develop various extensions of our basic methods. We show that in settings when computing the MLE is hard, for the purpose of constructing valid tests and intervals, it is sufficient to upper bound the maximum likelihood. We investigate some conditions under which our methods yield valid inferences under model misspecification. Further, the split LRT can be used with profile likelihoods to deal with nuisance parameters, and it can also be run sequentially to yield anytime-valid P values and confidence sequences. Finally, when combined with the method of sieves, it can be used to perform model selection with nested model classes. 
    more » « less
  3. Prior work applying semiparametric theory to causal inference has primarily focused on deriving estimators that exhibit statistical robustness under a prespecified causal model that permits identification of a desired causal parameter. However, a fundamental challenge is correct specification of such a model, which usually involves making untestable assumptions. Evidence factors is an approach to combining hypothesis tests of a common causal null hypothesis under two or more candidate causal models. Under certain conditions, this yields a test that is valid if at least one of the underlying models is correct, which is a form of causal robustness. We propose a method of combining semiparametric theory with evidence factors. We develop a causal null hypothesis test based on joint asymptotic normality of asymptotically linear semiparametric estimators, where each estimator is based on a distinct identifying functional derived from each of candidate causal models. We show that this test provides both statistical and causal robustness in the sense that it is valid if at least one of the proposed causal models is correct, while also allowing for slower than parametric rates of convergence in estimating nuisance functions. We demonstrate the effectiveness of our method via simulations and applications to the Framingham Heart Study and Wisconsin Longitudinal Study. 
    more » « less
  4. Prior work applying semiparametric theory to causal inference has primarily focused on deriving estimators that exhibit statistical robustness under a prespecified causal model that permits identification of a desired causal parameter. However, a fundamental challenge is correct specification of such a model, which usually involves making untestable assumptions. Evidence factors is an approach to combining hypothesis tests of a common causal null hypothesis under two or more candidate causal models. Under certain conditions, this yields a test that is valid if at least one of the underlying models is correct, which is a form of causal robustness. We propose a method of combining semiparametric theory with evidence factors. We develop a causal null hypothesis test based on joint asymptotic normality of K asymptotically linear semiparametric estimators, where each estimator is based on a distinct identifying functional derived from each of K candidate causal models. We show that this test provides both statistical and causal robustness in the sense that it is valid if at least one of the K proposed causal models is correct, while also allowing for slower than parametric rates of convergence in estimating nuisance functions. We demonstrate the effectiveness of our method via simulations and applications to the Framingham Heart Study and Wisconsin Longitudinal Study. 
    more » « less
  5. Abstract Instrumental variable methods are among the most commonly used causal inference approaches to deal with unmeasured confounders in observational studies. The presence of invalid instruments is the primary concern for practical applications, and a fast-growing area of research is inference for the causal effect with possibly invalid instruments. This paper illustrates that the existing confidence intervals may undercover when the valid and invalid instruments are hard to separate in a data-dependent way. To address this, we construct uniformly valid confidence intervals that are robust to the mistakes in separating valid and invalid instruments. We propose to search for a range of treatment effect values that lead to sufficiently many valid instruments. We further devise a novel sampling method, which, together with searching, leads to a more precise confidence interval. Our proposed searching and sampling confidence intervals are uniformly valid and achieve the parametric length under the finite-sample majority and plurality rules. We apply our proposal to examine the effect of education on earnings. The proposed method is implemented in the R package RobustIV available from CRAN. 
    more » « less