skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Causal inference with invalid instruments: post-selection problems and a solution using searching and sampling
Abstract Instrumental variable methods are among the most commonly used causal inference approaches to deal with unmeasured confounders in observational studies. The presence of invalid instruments is the primary concern for practical applications, and a fast-growing area of research is inference for the causal effect with possibly invalid instruments. This paper illustrates that the existing confidence intervals may undercover when the valid and invalid instruments are hard to separate in a data-dependent way. To address this, we construct uniformly valid confidence intervals that are robust to the mistakes in separating valid and invalid instruments. We propose to search for a range of treatment effect values that lead to sufficiently many valid instruments. We further devise a novel sampling method, which, together with searching, leads to a more precise confidence interval. Our proposed searching and sampling confidence intervals are uniformly valid and achieve the parametric length under the finite-sample majority and plurality rules. We apply our proposal to examine the effect of education on earnings. The proposed method is implemented in the R package RobustIV available from CRAN.  more » « less
Award ID(s):
2015373
PAR ID:
10474124
Author(s) / Creator(s):
Publisher / Repository:
Oxford Acadamic
Date Published:
Journal Name:
Journal of the Royal Statistical Society Series B: Statistical Methodology
Volume:
85
Issue:
3
ISSN:
1369-7412
Page Range / eLocation ID:
959 to 985
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Instrumental variables have been widely used to estimate the causal effect of a treatment on an outcome. Existing confidence intervals for causal effects based on instrumental variables assume that all of the putative instrumental variables are valid; a valid instrumental variable is a variable that affects the outcome only by affecting the treatment and is not related to unmeasured confounders. However, in practice, some of the putative instrumental variables are likely to be invalid. This paper presents two tools to conduct valid inference and tests in the presence of invalid instruments. First, we propose a simple and general approach to construct confidence intervals based on taking unions of well‐known confidence intervals. Second, we propose a novel test for the null causal effect based on a collider bias. Our two proposals outperform traditional instrumental variable confidence intervals when invalid instruments are present and can also be used as a sensitivity analysis when there is concern that instrumental variables assumptions are violated. The new approach is applied to a Mendelian randomization study on the causal effect of low‐density lipoprotein on globulin levels. 
    more » « less
  2. Summary Modern empirical work in regression discontinuity (RD) designs often employs local polynomial estimation and inference with a mean square error (MSE) optimal bandwidth choice. This bandwidth yields an MSE-optimal RD treatment effect estimator, but is by construction invalid for inference. Robust bias-corrected (RBC) inference methods are valid when using the MSE-optimal bandwidth, but we show that they yield suboptimal confidence intervals in terms of coverage error. We establish valid coverage error expansions for RBC confidence interval estimators and use these results to propose new inference-optimal bandwidth choices for forming these intervals. We find that the standard MSE-optimal bandwidth for the RD point estimator is too large when the goal is to construct RBC confidence intervals with the smaller coverage error rate. We further optimize the constant terms behind the coverage error to derive new optimal choices for the auxiliary bandwidth required for RBC inference. Our expansions also establish that RBC inference yields higher-order refinements (relative to traditional undersmoothing) in the context of RD designs. Our main results cover sharp and sharp kink RD designs under conditional heteroskedasticity, and we discuss extensions to fuzzy and other RD designs, clustered sampling, and pre-intervention covariates adjustments. The theoretical findings are illustrated with a Monte Carlo experiment and an empirical application, and the main methodological results are available in R and Stata packages. 
    more » « less
  3. This article proposes a novel causal discovery and inference method called GrIVET for a Gaussian directed acyclic graph with unmeasured confounders. GrIVET consists of an order-based causal discovery method and a likelihood-based inferential procedure. For causal discovery, we generalize the existing peeling algorithm to estimate the ancestral relations and candidate instruments in the presence of hidden confounders. Based on this, we propose a new procedure for instrumental variable estimation of each direct effect by separating it from any mediation effects. For inference, we develop a new likelihood ratio test of multiple causal effects that is able to account for the unmeasured confounders. Theoretically, we prove that the proposed method has desirable guarantees, including robustness to invalid instruments and uncertain interventions, estimation consistency, low-order polynomial time complexity, and validity of asymptotic inference. Numerically, GrIVET performs well and compares favorably against state-of-the-art competitors. Furthermore, we demonstrate the utility and effectiveness of the proposed method through an application inferring regulatory pathways from Alzheimer’s disease gene expression data. 
    more » « less
  4. Summary For decades, $ N $-of-1 experiments, where a unit serves as its own control and treatment in different time windows, have been used in certain medical contexts. However, due to effects that accumulate over long time windows and interventions that have complex evolution, a lack of robust inference tools has limited the widespread applicability of such $ N $-of-1 designs. This work combines techniques from experimental design in causal inference and system identification from control theory to provide such an inference framework. We derive a model of the dynamic interference effect that arises in linear time-invariant dynamical systems. We show that a family of causal estimands analogous to those studied in potential outcomes are estimable via a standard estimator derived from the method of moments. We derive formulae for higher moments of this estimator and describe conditions under which $ N $-of-1 designs may provide faster ways to estimate the effects of interventions in dynamical systems. We also provide conditions under which our estimator is asymptotically normal and derive valid confidence intervals for this setting. 
    more » « less
  5. Abstract Randomisation inference (RI) is typically interpreted as testing Fisher’s ‘sharp’ null hypothesis that all unit-level effects are exactly zero. This hypothesis is often criticised as restrictive and implausible, making its rejection scientifically uninteresting. We show, however, that many randomisation tests are also valid for a ‘bounded’ null hypothesis under which the unit-level effects are all non-positive (or all non-negative) but are otherwise heterogeneous. In addition to being more plausible a priori, bounded nulls are closely related to substantively important concepts such as monotonicity and Pareto efficiency. Reinterpreting RI in this way expands the range of inferences possible in this framework. We show that exact confidence intervals for the maximum (or minimum) unit-level effect can be obtained by inverting tests for a sequence of bounded nulls. We also generalise RI to cover inference for quantiles of the individual effect distribution as well as for the proportion of individual effects larger (or smaller) than a given threshold. The proposed confidence intervals for all effect quantiles are simultaneously valid, in the sense that no correction for multiple analyses is required. In sum, our reinterpretation and generalisation provide a broader justification for randomisation tests and a basis for exact non-parametric inference for effect quantiles. 
    more » « less