skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The HulC: confidence regions from convex hulls
We develop and analyse the HulC, an intuitive and general method for constructing confidence sets using the convex hull of estimates constructed from subsets of the data. Unlike classical methods which are based on estimating the (limiting) distribution of an estimator, the HulC is often simpler to use and effectively bypasses this step. In comparison to the bootstrap, the HulC requires fewer regularity conditions and succeeds in many examples where the bootstrap provably fails. Unlike sub-sampling, the HulC does not require knowledge of the rate of convergence of the estimators on which it is based. The validity of the HulC requires knowledge of the (asymptotic) median bias of the estimators. We further analyse a variant of our basic method, called the Adaptive HulC, which is fully data-driven and estimates the median bias using sub-sampling. We discuss these methods in the context of several challenging inferential problems which arise in parametric, semi-parametric, and non-parametric inference. Although our focus is on validity under weak regularity conditions, we also provide some general results on the width of the HulC confidence sets, showing that in many cases the HulC confidence sets have near-optimal width.  more » « less
Award ID(s):
2113684
PAR ID:
10524531
Author(s) / Creator(s):
; ;
Publisher / Repository:
Royal Statistical Society
Date Published:
Journal Name:
Journal of the Royal Statistical Society Series B: Statistical Methodology
Volume:
86
Issue:
3
ISSN:
1369-7412
Page Range / eLocation ID:
586 to 622
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The goal of this paper is to develop a practical and general-purpose approach to construct confidence intervals for differentially private parametric estimation. We find that the parametric bootstrap is a simple and effective solution. It cleanly reasons about variability of both the data sample and the randomized privacy mechanism and applies "out of the box" to a wide class of private estimation routines. It can also help correct bias caused by clipping data to limit sensitivity. We prove that the parametric bootstrap gives consistent confidence intervals in two broadly relevant settings, including a novel adaptation to linear regression that avoids accessing the covariate data multiple times. We demonstrate its effectiveness for a variety of estimators, and find empirically that it provides confidence intervals with good coverage even at modest sample sizes and performs better than alternative approaches. 
    more » « less
  2. While widely used as a general method for uncertainty quantification, the bootstrap method encounters difficulties that raise concerns about its validity in practical applications. This paper introduces a new resampling-based method, termed calibrated bootstrap, designed to generate finite sample-valid parametric inference from a sample of size n. The central idea is to calibrate an m-out-of-n resampling scheme, where the calibration parameter m is determined against inferential pivotal quantities derived from the cumulative distribution functions of loss functions in parameter estimation. The method comprises two algorithms. The first, named resampling approximation (RA), employs a stochastic approximation algorithm to find the value of the calibration parameter m=mα for a given α in a manner that ensures the resulting m-out-of-n bootstrapped 1−α confidence set is valid. The second algorithm, termed distributional resampling (DR), is developed to further select samples of bootstrapped estimates from the RA step when constructing 1−α confidence sets for a range of α values is of interest. The proposed method is illustrated and compared to existing methods using linear regression with and without L1 penalty, within the context of a high-dimensional setting and a real-world data application. The paper concludes with remarks on a few open problems worthy of consideration. 
    more » « less
  3. High-dimensional linear models with endogenous variables play an increasingly important role in the recent econometric literature. In this work, we allow for models with many endogenous variables and make use of many instrumental variables to achieve identification. Because of the high-dimensionality in the structural equation, constructing honest confidence regions with asymptotically correct coverage is non-trivial. Our main contribution is to propose estimators and confidence regions that achieve this goal. Our approach relies on moment conditions that satisfy the usual instrument orthogonality condition but also have an additional orthogonality property with respect to specific linear combinations of the endogenous variables which are treated as nuisance parameters. We propose new pivotal procedures for estimating the high-dimensional nuisance parameters which appear in our formulation. We use a multiplier bootstrap procedure to compute critical values and establish its validity for achieving simultaneously valid confidence regions for a potentially high-dimensional set of endogenous variable coefficients. 
    more » « less
  4. This paper highlights a tension between semiparametric efficiency and bootstrap consistency in the context of a canonical semiparametric estimation problem, namely the problem of estimating the average density. It is shown that although simple plug-in estimators suffer from bias problems preventing them from achieving semiparametric efficiency under minimal smoothness conditions, the nonparametric bootstrap automatically corrects for this bias and that, as a result, these seemingly inferior estimators achieve bootstrap consistency under minimal smoothness conditions. In contrast, several “debiased” estimators that achieve semiparametric efficiency under minimal smoothness conditions do not achieve bootstrap consistency under those same conditions. 
    more » « less
  5. We propose a general method for constructing confidence sets and hypothesis tests that have finite-sample guarantees without regularity conditions. We refer to such procedures as “universal.” The method is very simple and is based on a modified version of the usual likelihood-ratio statistic that we call “the split likelihood-ratio test” (split LRT) statistic. The (limiting) null distribution of the classical likelihood-ratio statistic is often intractable when used to test composite null hypotheses in irregular statistical models. Our method is especially appealing for statistical inference in these complex setups. The method we suggest works for any parametric model and also for some nonparametric models, as long as computing a maximum-likelihood estimator (MLE) is feasible under the null. Canonical examples arise in mixture modeling and shape-constrained inference, for which constructing tests and confidence sets has been notoriously difficult. We also develop various extensions of our basic methods. We show that in settings when computing the MLE is hard, for the purpose of constructing valid tests and intervals, it is sufficient to upper bound the maximum likelihood. We investigate some conditions under which our methods yield valid inferences under model misspecification. Further, the split LRT can be used with profile likelihoods to deal with nuisance parameters, and it can also be run sequentially to yield anytime-valid P values and confidence sequences. Finally, when combined with the method of sieves, it can be used to perform model selection with nested model classes. 
    more » « less