skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rate-induced collapse in evolutionary systems
Recent work has highlighted the possibility of ‘rate-induced tipping’, in which a system undergoes an abrupt transition when a perturbation exceeds a critical rate of change. Here, we argue that this is widely applicable to evolutionary systems: collapse, or extinction, may occur when external changes occur too fast for evolutionary adaptation to keep up. To bridge existing theoretical frameworks, we develop a minimal evolutionary–ecological model showing that rate-induced extinction and the established notion of ‘evolutionary rescue’ are fundamentally two sides of the same coin: the failure of one implies the other, and vice versa. We compare the minimal model’s behaviour with that of a more complex model in which the large-scale dynamics emerge from the interactions of many individual agents; in both cases, there is a well-defined threshold rate to induce extinction, and a consistent scaling law for that rate as a function of timescale. Due to the fundamental nature of the underlying mechanism, we suggest that a vast range of evolutionary systems should in principle be susceptible to rate-induced collapse. This would include ecosystems on all scales as well as human societies; further research is warranted.  more » « less
Award ID(s):
2140206
PAR ID:
10430474
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of The Royal Society Interface
Volume:
19
Issue:
191
ISSN:
1742-5662
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract When a population experiences severe stress from a changing environment, evolution by natural selection can prevent its extinction, a process dubbed “evolutionary rescue.” However, evolution may be unable to track the sort ofrapidenvironmental change being experienced by many modern‐day populations. A potential solution is for organisms to respond to environmental change through phenotypic plasticity, which can buffer populations against change and thereby buy time for evolutionary rescue. In this review, we examine whether this process extends to situations in which the environmentally induced response is passed to offspring. As we describe, theoretical and empirical studies suggest that such “transgenerational plasticity” can increase population persistence. We discuss the implications of this process for conservation biology, outline potential limitations, and describe some applications. Generally, transgenerational plasticity may be effective at buying time for evolutionary rescue to occur. 
    more » « less
  2. Abstract In today’s rapidly changing world, it is critical to examine how animal populations will respond to severe environmental change. Following events such as pollution or deforestation that cause populations to decline, extinction will occur unless populations can adapt in response to natural selection, a process called evolutionary rescue. Theory predicts that immigration can delay extinction and provide novel genetic material that can prevent inbreeding depression and facilitate adaptation. However, when potential source populations have not experienced the new environment before (i.e., are naive), immigration can counteract selection and constrain adaptation. This study evaluated the effects of immigration of naive individuals on evolutionary rescue using the red flour beetle, Tribolium castaneum, as a model system. Small populations were exposed to a challenging environment, and 3 immigration rates (0, 1, or 5 migrants per generation) were implemented with migrants from a benign environment. Following an initial decline in population size across all treatments, populations receiving no immigration gained a higher growth rate one generation earlier than those with immigration, illustrating the constraining effects of immigration on adaptation. After 7 generations, a reciprocal transplant experiment found evidence for adaptation regardless of immigration rate. Thus, while the immigration of naive individuals briefly delayed adaptation, it did not increase extinction risk or prevent adaptation following environmental change. 
    more » « less
  3. György Barabás (Ed.)
    Intrinsically generated oscillations are a defining feature of consumer-resource interactions. They can have important consequences for the evolution of consumer functional responses. Functional response traits that maximize resource fitness (low attack rate and long handling time) and consumer fitness (high attack rate and short handling time) generate high-amplitude oscillations that can predispose species to extinction during periods of low abundances. This suggests that the ecological consequences of consumer-resource oscillations may impede evolutionary outcomes that maximize fitness. Data suggest this to be a strong possibility. Time series analyses reveal consumer-resource cycles to be infrequent in real communities, and functional response studies show a preponderance of low attack rates and/or short handling times that preclude oscillations but maximize neither species' fitness. Here I present a mathematical model to address this tension between ecological dynamics and the evolution of functional response traits. I show that the empirically observed attack rate-handling time distributions emerge naturally from the interplay between individual-level selection and the population-level constraint of oscillation-induced extinction. Extinction at low abundances curtails stabilizing selection toward trait values that maximize fitness but induce large-amplitude oscillations. As a result, persistent interactions are those in which the mean attack rate is low and/or the mean handling time is short. These findings emphasize the importance of incorporating oscillation-induced extinction into models that link food web topology to community persistence. 
    more » « less
  4. Biodiversity loss poses a major threat to ecosystem function, which has already been severely impacted by global late-Quaternary defaunation. The loss of mammalian megafauna from many insular systems has rendered reptiles into key modulators of many ecosystem services, such as seed dispersal and pollination. How late-Quaternary extinction events impacted reptile functional diversity remains unclear but can provide critical guidance on traits that render reptiles vulnerable to extinction, as well as anthropogenic, environmental, and evolutionary histories that may promote stability and resilience. This study reconstructs the trajectory of functional diversity change in the Caribbean reptile fauna, a speciose biota distributed over a diverse set of islands with heterogeneous histories of human habitation and exploitation. Human-induced Quaternary extinctions have completely removed key functional entities (FEs)—groupings of species with similar traits that are expected to provide similar ecosystem services—from the region, but functional redundancy on large islands served as a buffer to major functional diversity loss. Small islands, on the other hand, lose up to 67% of their native FEs with only a few exceptions, underscoring the importance of a place’s anthropogenic history in shaping present-day biodiversity. While functional redundancy has shielded ecosystems from significant functional diversity loss in the past, it is being eroded and not replenished by species introductions, leaving many native FEs and the communities that they support vulnerable to extinction and functional collapse. This research provides critical data on long-term functional diversity loss for a taxonomic group whose contributions to ecosystem function are understudied and undervalued. 
    more » « less
  5. The effect of traits on diversification rates is a major topic of study in the fields of evolutionary biology and palaeontology. Many researchers investigating these macroevolutionary questions currently make use of the extensive suite of state-dependent speciation and extinction (SSE) models. These models were developed for, and are almost exclusively used with, phylogenetic trees of extant species. However, analyses considering only extant taxa are limited in their power to estimate extinction rates. Furthermore, SSE models can erroneously detect associations between neutral traits and diversification rates when the true associated trait is not observed. In this study, we examined the impact of including fossil data on the accuracy of parameter estimates under the binary-state speciation and extinction (BiSSE) model. This was achieved by combining SSE models with the fossilized birth–death process. We show that the inclusion of fossils improves the accuracy of extinction-rate estimates for analyses applying the BiSSE model in a Bayesian inference framework, with no negative impact on speciation-rate and state transition-rate estimates when compared with estimates from trees of only extant taxa. However, even with the addition of fossil data, analyses under the BiSSE model continued to incorrectly identify correlations between diversification rates and neutral traits. This article is part of the theme issue ‘“A mathematical theory of evolution”: phylogenetic models dating back 100 years’. 
    more » « less