- Award ID(s):
- 2023568
- PAR ID:
- 10430475
- Date Published:
- Journal Name:
- Chemical Communications
- Volume:
- 58
- Issue:
- 90
- ISSN:
- 1359-7345
- Page Range / eLocation ID:
- 12556 to 12559
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Transition metal catalysis hinges on the formation of metal-carbon bonds during catalytic cycles. The stability and reactivity of these bonds are what determine product chemo-, regio-, and enantioselectivity. The advent of electrosynthetic methodologies has placed the current understanding of these metal-alkyl bonds into a new environment of charged species and electrochemically induced reactivity. In this paper, we explore the often neglected impact of supporting electrolyte on homogeneous electrocatalytic mechanisms using the catalytic reduction of benzyl chlorides via Co and Fe tetraphenylprophyrins as a model reaction. The mechanism of this reaction is confirmed to proceed through the formation of the metal-alkyl intermediates. Critically, the stability of these intermediates, in both the Co and Fe systems, is found to be affected by the size of the supporting electrolyte. These studies provide important information for the design of electrosynthetic reactions, and provide a starting point for the rational design of functional supporting electrolytes.more » « less
-
Abstract Selective modification of natural proteins is a daunting methodological challenge and a stringent test of selectivity and reaction scope. There is a continued need for new reactivity and new selectivity concepts. Transition metals exhibit a wealth of unique reactivity that is orthogonal to biological reactions and processes. As such, metal‐based methods play an increasingly important role in bioconjugation. This Review examines metal‐based methods as well as their reactivity and selectivity for the functionalization of natural proteins and peptides.
-
Electrocatalysis has become an important topic in various areas of research, including chemical catalysis, environmental research, and chemical engineering. There have been a multitude of different catalysts used in the electrocatalytic reduction of CO2, which include large classes of materials such as transition metal oxide nanoparticles (TMO), transition metal nanoparticles (TMNp), carbon-based nanomaterials, and transition metal sulfides (TMS), as well as porphyrins and phthalocyanine molecules. This review is focused on the CO2 reduction reaction (CO2RR) and the main products produced using TMS nanomaterials. The main reaction products of the CO2RR include carbon monoxide (CO), formate/formic acid (HCOO−/HCOOH), methanol (CH3OH), ethanol (CH3CH2OH), methane (CH4), and ethene (C2H4). The products of the CO2RR have been linked to the type of transition metal–sulfide catalyst used in the reaction. The TMS has been shown to control the intermediate products and thus the reaction pathway. Both experimental and computational methods have been utilized to determine the CO2 binding and chemically reduced intermediates, which drive the reaction pathways for the CO2RR and are discussed in this review.more » « less
-
The reaction of a terminal Mo(II) nitride with a U(III) complex yields an heterodimetallic U-Mo nitride which is the first example of a transition metal-capped uranium nitride. The nitride is triply bonded to U(V) and singly bonded to Mo(0) and supports a U-Mo interaction. This compound shows reactivity toward CO oxidation.more » « less
-
Abstract A transition metal‐free Se‐catalyzed C−H amination protocol for α’‐amination of enol derivatives has been developed. This reaction can be used to functionalize a wide variety of oxygen‐ and halogen‐substituted alkenes spanning a vast range of nucleophilicities, giving α’‐aminated enol derivatives with high regioselectivity. Amination of
E /Z mixtures of alkenes proceeds stereoconvergently to give the (Z )‐enol derivatives exclusively. Mechanistic studies revealed that the relative reactivity and α’‐regioselectivity of these transformations is determined by substantial resonance donation to the heteroatom‐bound carbon in the transition state. These products participate in traditional reactions of enol derivatives, allowing for efficient functionalization of both α‐ and α’‐positions from a single enol derivative with high diastereocontrol.