skip to main content


Title: Experimental analysis of particle clustering in moderately dense gas–solid flow
In collisional gas–solid flows, dense particle clusters are often observed that greatly affect the transport properties of the mixture. The characterisation and prediction of this phenomenon are challenging due to limited optical access, the wide range of scales involved and the interplay of different mechanisms. Here, we consider a laboratory setup in which particles fall against upward-moving air in a square vertical duct: a classic configuration in riser reactors. The use of non-cohesive, monodispersed, spherical particles and the ability to independently vary the solid volume fraction ( $\varPhi _V = 0.1\,\% - 0.8\,\%$ ) and the bulk airflow Reynolds number ( $Re_{bulk} = 300 - 1200$ ) allows us to isolate key elements of the multiphase dynamics, providing the first laboratory observation of cluster-induced turbulence. Above a threshold $\varPhi _V$ , the system exhibits intense fluctuations of concentration and velocity, as measured by high-speed imaging via a backlighting technique which returns optically depth-averaged fields. The space–time autocorrelations reveal dense and persistent mesoscale structures falling faster than the surrounding particles and trailing long wakes. These are shown to be the statistical footprints of visually observed clusters, mostly found in the vicinity of the walls. They are identified via a percolation analysis, tracked in time, and characterised in terms of size, shape, location and velocity. Larger clusters are denser, longer-lived and have greater descent velocity. At the present particle Stokes number, the threshold $\varPhi _V \sim 0.5$ % (largely independent from $Re_{bulk}$ ) is consistent with the view that clusters appear when the typical interval between successive collisions is shorter than the particle response time.  more » « less
Award ID(s):
1903564
NSF-PAR ID:
10333128
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
933
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study presents direct numerical simulations of turbulent Rayleigh–Bénard convection in non-colloidal suspensions, with special focus on the heat transfer modifications in the flow. Adopting a Rayleigh number of $10^8$ and Prandtl number of 7, parametric investigations of the particle volume fraction $0\leq \varPhi \leq 40\,\%$ and particle diameter $1/20\leq d^*_p\leq 1/10$ with respect to the cavity height, are carried out. The particles are neutrally buoyant, rigid spheres with physical properties that match the fluid phase. Up to $\varPhi =25\,\%$ , the Nusselt number increases weakly but steadily, mainly due to the increased thermal agitation that overcomes the decreased kinetic energy of the flow. Beyond $\varPhi =30\,\%$ , the Nusselt number exhibits a substantial drop, down to approximately 1/3 of the single-phase value. This decrease is attributed to the dense particle layering in the near-wall region, confirmed by the time-averaged local volume fraction. The dense particle layer reduces the convection in the near-wall region and negates the formation of any coherent structures within one particle diameter from the wall. Significant differences between $\varPhi \leq 30\,\%$ and 40 % are observed in all statistical quantities, including heat transfer and turbulent kinetic energy budgets, and two-point correlations. Special attention is also given to the role of particle rotation, which is shown to contribute to maintaining high heat transfer rates in moderate volume fractions. Furthermore, decreasing the particle size promotes the particle layering next to the wall, inducing a similar heat transfer reduction as in the highest particle volume fraction case. 
    more » « less
  2. Introduction The mechanical vulnerability of the atherosclerotic cap is a crucial risk factor in asymptomatic fibroatheromas. Our research group demonstrated using numerical modeling that microcalcifications (µCalcs) located in the fibrous cap can multiply the tissue background stress by a factor 2-7[1-3]. We showed how this effect depends on the size and the ratio of the gap between particles pairs (h) and their diameter (D) along the tensile axis. In this context, we studied the impact of micro-beads of varying diameters and concentration on the rupture of human fibroatheroma laboratory models. Methods We created silicone-based (DowsilEE-3200, Dow Corning) dumbbell-shaped models (80%-scaled ASTM D412-C) of arterial tissues. Samples were divided into three groups: (1) without μBeads (control, n=12), (2) with μBeads of varying diameter (D=30,50,100μm) at a constant concentration of 1% weight (n=36), (3) with μBeads of constant diameter (D=50μm) at different concentrations (3% and 5% weight) (n=24). Before testing, samples were scanned under Micro-CT, at a resolution of 4µm. Images were then reconstructed in NRecon (SkySCan, v.2014) and structural parameters obtained in CTan (SkyScan, v.2014). These data were used to calculate the number of beads and their respective h/D ratio in a custom-made MATLAB script. We tested the samples using a custom-made micro material testing system equipped with real-time control and acquisition software (LabVIEW, v. 2018, NI). The reaction force and displacement were measured by the system and images of the sample were recorded by a high-resolution camera. The true stress and strain profiles of each sample were obtained by means of Digital Image Correlation (DIC). Results Samples with and without μBeads exhibited a distinct hyperelastic behaviour typical of arterial tissues (Fig1). Comparison of the mean ultimate stress (UTS) between groups was performed by one-way ANOVA test followed by post-hoc pairwise comparison. Regardless of the group, the presence of μBeads determined a statistically significant reduction in UTS (Fig2). Increasing the μBeads concentration was also positively correlated with lower stresses at rupture as more clusters formed resulting in lower values of h/D (Table1). Discussions Our results clearly capture the influence of μBeads on the rupture threshold of a vascular tissue mimicking material. In fact, samples with μBeads exhibit levels of UTS that are around two times lower than the control group. This effect appears to be dependent on the μBeads proximity, as lower h/D correlates with higher UTS reductions. On the other hand, the effect of particle size is not apparent for the diameters considered in this study. The plausible explanation for the observed change in rupture threshold is the increase in stress concentration around spherical μBeads, which we have previously shown in analytical and numerical studies [1-3]. Our experimental observations support our previous studies suggesting that μCalcs located within the fibroatheroma cap may be responsible for significantly increasing the risk of cap rupture that precedes myocardial infarction and sudden death. 
    more » « less
  3. The relative velocities and positions of monodisperse high-inertia particle pairs in isotropic turbulence are studied using direct numerical simulations (DNS), as well as Langevin simulations (LS) based on a probability density function (PDF) kinetic model for pair relative motion. In a prior study (Rani et al. , J. Fluid Mech. , vol. 756, 2014, pp. 870–902), the authors developed a stochastic theory that involved deriving closures in the limit of high Stokes number for the diffusivity tensor in the PDF equation for monodisperse particle pairs. The diffusivity contained the time integral of the Eulerian two-time correlation of fluid relative velocities seen by pairs that are nearly stationary. The two-time correlation was analytically resolved through the approximation that the temporal change in the fluid relative velocities seen by a pair occurs principally due to the advection of smaller eddies past the pair by large-scale eddies. Accordingly, two diffusivity expressions were obtained based on whether the pair centre of mass remained fixed during flow time scales, or moved in response to integral-scale eddies. In the current study, a quantitative analysis of the (Rani et al. 2014) stochastic theory is performed through a comparison of the pair statistics obtained using LS with those from DNS. LS consist of evolving the Langevin equations for pair separation and relative velocity, which is statistically equivalent to solving the classical Fokker–Planck form of the pair PDF equation. Langevin simulations of particle-pair dispersion were performed using three closure forms of the diffusivity – i.e. the one containing the time integral of the Eulerian two-time correlation of the seen fluid relative velocities and the two analytical diffusivity expressions. In the first closure form, the two-time correlation was computed using DNS of forced isotropic turbulence laden with stationary particles. The two analytical closure forms have the advantage that they can be evaluated using a model for the turbulence energy spectrum that closely matched the DNS spectrum. The three diffusivities are analysed to quantify the effects of the approximations made in deriving them. Pair relative-motion statistics obtained from the three sets of Langevin simulations are compared with the results from the DNS of (moving) particle-laden forced isotropic turbulence for $St_{\unicode[STIX]{x1D702}}=10,20,40,80$ and $Re_{\unicode[STIX]{x1D706}}=76,131$ . Here, $St_{\unicode[STIX]{x1D702}}$ is the particle Stokes number based on the Kolmogorov time scale and $Re_{\unicode[STIX]{x1D706}}$  is the Taylor micro-scale Reynolds number. Statistics such as the radial distribution function (RDF), the variance and kurtosis of particle-pair relative velocities and the particle collision kernel were computed using both Langevin and DNS runs, and compared. The RDFs from the stochastic runs were in good agreement with those from the DNS. Also computed were the PDFs $\unicode[STIX]{x1D6FA}(U|r)$ and $\unicode[STIX]{x1D6FA}(U_{r}|r)$ of relative velocity $U$ and of the radial component of relative velocity $U_{r}$ respectively, both PDFs conditioned on separation $r$ . The first closure form, involving the Eulerian two-time correlation of fluid relative velocities, showed the best agreement with the DNS results for the PDFs. 
    more » « less
  4. We present a numerical study of non-colloidal spherical and rigid particles suspended in Newtonian, shear thinning and shear thickening fluids employing an immersed boundary method. We consider a linear Couette configuration to explore a wide range of solid volume fractions ( $0.1\leqslant \unicode[STIX]{x1D6F7}\leqslant 0.4$ ) and particle Reynolds numbers ( $0.1\leqslant Re_{p}\leqslant 10$ ). We report the distribution of solid and fluid phase velocity and solid volume fraction and show that close to the boundaries inertial effects result in a significant slip velocity between the solid and fluid phase. The local solid volume fraction profiles indicate particle layering close to the walls, which increases with the nominal $\unicode[STIX]{x1D6F7}$ . This feature is associated with the confinement effects. We calculate the probability density function of local strain rates and compare the latter’s mean value with the values estimated from the homogenisation theory of Chateau et al. ( J. Rheol. , vol. 52, 2008, pp. 489–506), indicating a reasonable agreement in the Stokesian regime. Both the mean value and standard deviation of the local strain rates increase primarily with the solid volume fraction and secondarily with the $Re_{p}$ . The wide spectrum of the local shear rate and its dependency on $\unicode[STIX]{x1D6F7}$ and $Re_{p}$ point to the deficiencies of the mean value of the local shear rates in estimating the rheology of these non-colloidal complex suspensions. Finally, we show that in the presence of inertia, the effective viscosity of these non-colloidal suspensions deviates from that of Stokesian suspensions. We discuss how inertia affects the microstructure and provide a scaling argument to give a closure for the suspension shear stress for both Newtonian and power-law suspending fluids. The stress closure is valid for moderate particle Reynolds numbers, $O(Re_{p})\sim 10$ . 
    more » « less
  5. Laboratory experiments were conducted to study particle migration and flow properties of non-Brownian, noncolloidal suspensions ranging from 10% to 40% particle volume fraction in a pressure-driven flow over and through a porous structure at a low Reynolds number. Particle concentration maps, velocity maps, and corresponding profiles were acquired using a magnetic resonance imaging technique. The model porous medium consists of square arrays of circular rods oriented across the flow in a rectangular microchannel. It was observed that the square arrays of the circular rods modify the velocity profiles and result in heterogeneous concentration fields for various suspensions. As the bulk particle volume fraction of the suspension increases, particles tend to concentrate in the free channel relative to the porous medium while the centerline velocity profile along the lateral direction becomes increasingly blunted. Within the porous structure, concentrated suspensions exhibit smaller periodic axial velocity variations due to the geometry compared to semidilute suspensions (bulk volume fraction ranges from 10% to 20%) and show periodic concentration variations, where the average particle concentration is slightly greater between the rods than on top of the rods. For concentrated systems, high particle concentration pathways aligned with the flow direction are observed in regions that correspond to gaps between rods within the porous medium.

     
    more » « less