skip to main content


Title: The MPIfR–MeerKAT Galactic Plane Survey – I. System set-up and early results
ABSTRACT

Galactic plane radio surveys play a key role in improving our understanding of a wide range of astrophysical phenomena. Performing such a survey using the latest interferometric telescopes produces large data rates necessitating a shift towards fully or quasi-real-time data analysis with data being stored for only the time required to process them. We present here the overview and set-up for the 3000-h Max-Planck-Institut für Radioastronomie (MPIfR)–MeerKAT Galactic Plane Survey (MMGPS). The survey is unique by operating in a commensal mode, addressing key science objectives of the survey including the discovery of new pulsars and transients and studies of Galactic magnetism, the interstellar medium and star formation rates. We explain the strategy coupled with the necessary hardware and software infrastructure needed for data reduction in the imaging, spectral, and time domains. We have so far discovered 78 new pulsars including 17 confirmed binary systems of which two are potential double neutron star systems. We have also developed an imaging pipeline sensitive to the order of a few tens of micro-Jansky ($\mu{\rm Jy}$) with a spatial resolution of a few arcseconds. Further science operations with an in-house built S-band receiver operating between 1.7 and 3.5 GHz are about to commence. Early spectral line commissioning observations conducted at S-band, targeting transitions of the key molecular gas tracer CH at 3.3 GHz already illustrate the spectroscopic capabilities of this instrument. These results lay a strong foundation for future surveys with telescopes like the Square Kilometre Array (SKA).

 
more » « less
NSF-PAR ID:
10430968
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
524
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 1291-1315
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present new discoveries and results from long-term timing of 72 pulsars discovered in the Pulsar Arecibo L -band Feed Array (PALFA) survey, including precise determination of astrometric and spin parameters, and flux density and scatter broadening measurements at 1.4 GHz. Notable discoveries include two young pulsars (characteristic ages ∼30 kyr) with no apparent supernova remnant associations, three mode-changing, 12 nulling and two intermittent pulsars. We detected eight glitches in five pulsars. Among them is PSR J1939+2609, an apparently old pulsar (characteristic age ∼1 Gy), and PSR J1954+2529, which likely belongs to a newly emerging class of binary pulsars. The latter is the only pulsar among the 72 that is clearly not isolated: a nonrecycled neutron star with a 931 ms spin period in an eccentric ( e = 0.114) wide ( P b = 82.7 days) orbit with a companion of undetermined nature having a minimum mass of ∼0.6 M ⊙ . Since operations at Arecibo ceased in 2020 August, we give a final tally of PALFA sky coverage, and compare its 207 pulsar discoveries to the known population. On average, they are 50% more distant than other Galactic plane radio pulsars; PALFA millisecond pulsars (MSPs) have twice the dispersion measure per unit spin period than the known population of MSP in the plane. The four intermittent pulsars discovered by PALFA more than double the population of such objects, which should help to improve our understanding of pulsar magnetosphere physics. The statistics for these, rotating radio transients, and nulling pulsars suggest that there are many more of these objects in the Galaxy than was previously thought. 
    more » « less
  2. ABSTRACT

    We present pulsar emission beam analyses and models in an effort to examine pulsar geometry and physics at the lowest frequencies scattering permits. We consider two populations of well-studied pulsars that lie outside the Arecibo sky, the first drawing on the Jodrell Bank Gould & Lyne survey down to –35° declination and a second using Parkes surveys in the far south. These assemble the full sky population of 487 pulsars known before the late 1990s which conveniently all have ‘B’ names. We make full use of the core/double-cone emission beam model to assess its efficacy at lower frequencies, and we outline how different pair plasma sources probably underlie its validity. The analysis shows that with a very few exceptions pulsar radio emission beams can be modeled quantitatively with two concentric conal beams and a core beam of regular angular dimensions at 1 GHz. Further, the beamforms at lower frequencies change progressively in size but not in configuration. Pulsar emission-beam properties divide strongly depending on whether the plasma excitation is central within the polar fluxtube producing a core beam or peripheral along the edges generating conal beams, and this seems largely determined by whether their spin-down energy is greater or less than about 1032.5 ergs s−1. Core emission dominated pulsars tend concentrate closely along the Galactic plane and in the direction of the Galactic center; whereas conal pulsars are somewhat more uniformly distributed both in Galactic longitude and latitude. Core dominated pulsars also tend to be more distant and particularly so in the inner Galaxy region.

     
    more » « less
  3. ABSTRACT We conducted a drift-scan observation campaign using the 305-m Arecibo telescope in 2020 January and March when the observatory was temporarily closed during the intense earthquakes and the initial outbreak of the COVID-19 pandemic, respectively. The primary objective of the survey was to search for fast radio transients, including fast radio bursts (FRBs) and rotating radio transients (RRATs). We used the seven-beam ALFA receiver to observe different sections of the sky within the declination region ∼(10°–20°) on 23 nights and collected 160 h of data in total. We searched our data for single-pulse transients, of covering up to a maximum dispersion measure of 11 000 pc cm−3 at which the dispersion delay across the entire bandwidth is equal to the 13-s transit length of our observations. The analysis produced more than 18 million candidates. Machine learning techniques sorted the radio frequency interference and possibly astrophysical candidates, allowing us to visually inspect and confirm the candidate transients. We found no evidence for new astrophysical transients in our data. We also searched for emission from repeated transient signals, but found no evidence for such sources. We detected single pulses from two known pulsars in our observations and their measured flux densities are consistent with the expected values. Based on our observations and sensitivity, we estimated the upper limit for the FRB rate to be <2.8 × 105 sky−1 d−1 above a fluence of 0.16 Jy ms at 1.4 GHz, which is consistent with the rates from other telescopes and surveys. 
    more » « less
  4. ABSTRACT

    In the time domain, the radio sky in particular along the Galactic plane direction may vary significantly because of various energetic activities associated with stars, stellar, and supermassive black holes. Multi-epoch Very Large Array surveys of the Galactic plane at 5.0 GHz enabled the finding of a catalogue of 39 variable radio sources in the flux density range 1–70 mJy. To probe their radio structures and spectra, we observed 17 sources with the very-long-baseline interferometric (VLBI) imaging technique and collected additional multifrequency data from the literature. We detected all of the sources at 5 GHz with the Westerbork Synthesis Radio Telescope, but only G23.6644–0.0372 with the European VLBI Network (EVN). Together with its decadal variability and multifrequency radio spectrum, we interpret it as an extragalactic peaked-spectrum source with a size of ≲10 pc. The remaining sources were resolved out by the long baselines of the EVN because of either strong scatter broadening at the Galactic latitude < 1° or intrinsically very extended structures on centi-arcsec scales. According to their spectral and structural properties, we find that the sample has a diverse nature. We notice two young H ii regions and spot a radio star and a candidate planetary nebula. The rest of the sources are very likely associated with radio active galactic nuclei (AGNs). Two of them also display arcsec-scale faint jet activity. The sample study indicates that AGNs are common place even among variable radio sources in the Galactic plane.

     
    more » « less
  5. We present the goals, strategy and first results of the high-cadence Galactic plane survey using the Zwicky Transient Facility (ZTF). The goal of the survey is to unveil the Galactic population of short-period variable stars, including short period binaries and stellar pulsators with periods less than a few hours. Between June 2018 and January 2019, we observed 64 ZTF fields resulting in 2990 deg2 of high stellar density in ZTF-r band along the Galactic Plane. Each field was observed continuously for 1.5 to 6 hrs with a cadence of 40 sec. Most fields have between 200 and 400 observations obtained over 2-3 continuous nights. As part of this survey we extract a total of ≈230 million individual objects with at least 80 epochs obtained during the high-cadence Galactic Plane survey reaching an average depth of ZTF-r ≈20.5 mag. For four selected fields with 2 million to 10 million individual objects per field we calculate different variability statistics and find that ≈1-2% of the objects are astrophysically variable over the observed period. We present a progress report on recent discoveries, including a new class of compact pulsators, the first members of a new class of Roche Lobe filling hot subdwarf binaries as well as new ultracompact double white dwarfs and flaring stars. Finally we present a sample of 12 new single-mode hot subdwarf B-star pulsators with pulsation amplitudes between ZTF-r = 20-76 mmag and pulsation periods between P = 5.8-16 min with a strong cluster of systems with periods ≈ 6 min. All of the data have now been released in either ZTF Data Release 3 or data release 4. 
    more » « less