skip to main content


Title: Discrepancy in modular arithmetic progressions
Celebrated theorems of Roth and of Matoušek and Spencer together show that the discrepancy of arithmetic progressions in the first $n$ positive integers is $\Theta (n^{1/4})$ . We study the analogous problem in the $\mathbb {Z}_n$ setting. We asymptotically determine the logarithm of the discrepancy of arithmetic progressions in $\mathbb {Z}_n$ for all positive integer $n$ . We further determine up to a constant factor the discrepancy of arithmetic progressions in $\mathbb {Z}_n$ for many $n$ . For example, if $n=p^k$ is a prime power, then the discrepancy of arithmetic progressions in $\mathbb {Z}_n$ is $\Theta (n^{1/3+r_k/(6k)})$ , where $r_k \in \{0,1,2\}$ is the remainder when $k$ is divided by $3$ . This solves a problem of Hebbinghaus and Srivastav.  more » « less
Award ID(s):
2154129 1855635
NSF-PAR ID:
10431297
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Compositio Mathematica
Volume:
158
Issue:
11
ISSN:
0010-437X
Page Range / eLocation ID:
2082 to 2108
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Let Xk denote the number of k-term arithmetic progressions in a random subset of $\mathbb{Z}/N\mathbb{Z}$ or $\{1, \dots , N\}$ where every element is included independently with probability p. We determine the asymptotics of $\log \mathbb{P}\big (X_{k} \ge \big (1+\delta \big ) \mathbb{E} X_{k}\big )$ (also known as the large deviation rate) where p → 0 with $p \ge N^{-c_{k}}$ for some constant ck > 0, which answers a question of Chatterjee and Dembo. The proofs rely on the recent nonlinear large deviation principle of Eldan, which improved on earlier results of Chatterjee and Dembo. Our results complement those of Warnke, who used completely different methods to estimate, for the full range of p, the large deviation rate up to a constant factor. 
    more » « less
  2. null (Ed.)
    Abstract Let $K$ be an algebraically closed field of prime characteristic $p$ , let $X$ be a semiabelian variety defined over a finite subfield of $K$ , let $\unicode[STIX]{x1D6F7}:X\longrightarrow X$ be a regular self-map defined over $K$ , let $V\subset X$ be a subvariety defined over $K$ , and let $\unicode[STIX]{x1D6FC}\in X(K)$ . The dynamical Mordell–Lang conjecture in characteristic $p$ predicts that the set $S=\{n\in \mathbb{N}:\unicode[STIX]{x1D6F7}^{n}(\unicode[STIX]{x1D6FC})\in V\}$ is a union of finitely many arithmetic progressions, along with finitely many $p$ -sets, which are sets of the form $\{\sum _{i=1}^{m}c_{i}p^{k_{i}n_{i}}:n_{i}\in \mathbb{N}\}$ for some $m\in \mathbb{N}$ , some rational numbers $c_{i}$ and some non-negative integers $k_{i}$ . We prove that this conjecture is equivalent with some difficult diophantine problem in characteristic 0. In the case $X$ is an algebraic torus, we can prove the conjecture in two cases: either when $\dim (V)\leqslant 2$ , or when no iterate of $\unicode[STIX]{x1D6F7}$ is a group endomorphism which induces the action of a power of the Frobenius on a positive dimensional algebraic subgroup of $X$ . We end by proving that Vojta’s conjecture implies the dynamical Mordell–Lang conjecture for tori with no restriction. 
    more » « less
  3. Abstract The superspace ring $\Omega _n$ is a rank n polynomial ring tensored with a rank n exterior algebra. Using an extension of the Vandermonde determinant to $\Omega _n$ , the authors previously defined a family of doubly graded quotients ${\mathbb {W}}_{n,k}$ of $\Omega _n$ , which carry an action of the symmetric group ${\mathfrak {S}}_n$ and satisfy a bigraded version of Poincaré Duality. In this paper, we examine the duality modules ${\mathbb {W}}_{n,k}$ in greater detail. We describe a monomial basis of ${\mathbb {W}}_{n,k}$ and give combinatorial formulas for its bigraded Hilbert and Frobenius series. These formulas involve new combinatorial objects called ordered set superpartitions . These are ordered set partitions $(B_1 \mid \cdots \mid B_k)$ of $\{1,\dots ,n\}$ in which the nonminimal elements of any block $B_i$ may be barred or unbarred. 
    more » « less
  4. null (Ed.)
    Let $E/\mathbb {Q}$ be a number field of degree $n$ . We show that if $\operatorname {Reg}(E)\ll _n |\!\operatorname{Disc}(E)|^{1/4}$ then the fraction of class group characters for which the Hecke $L$ -function does not vanish at the central point is $\gg _{n,\varepsilon } |\!\operatorname{Disc}(E)|^{-1/4-\varepsilon }$ . The proof is an interplay between almost equidistribution of Eisenstein periods over the toral packet in $\mathbf {PGL}_n(\mathbb {Z})\backslash \mathbf {PGL}_n(\mathbb {R})$ associated to the maximal order of $E$ , and the escape of mass of the torus orbit associated to the trivial ideal class. 
    more » « less
  5. Abstract The distribution of natural frequencies of the Euler–Bernoulli beam subject to fully non-dissipative boundary conditions is investigated. The beam is clamped at the left end and equipped with a 4-parameter ($\alpha ,\beta ,k_1,k_2$) linear boundary feedback law at the right end. The $2 \times 2$ boundary feedback matrix relates the control input (a vector of velocity and its spatial derivative at the right end), to the output (a vector of shear and moment at the right end). The initial boundary value problem describing the dynamics of the beam has been reduced to the first order in time evolution equation in the state Hilbert space equipped with the energy norm. The dynamics generator has a purely discrete spectrum (the vibrational modes) denoted by $\{\nu _n\}_{n\in \mathbb {Z}^{\prime}}$. The role of the control parameters is examined and the following results have been proven: (i) when $\beta \neq 0$, the set of vibrational modes is asymptotically close to the vertical line on the complex $\nu$-plane given by the equation $\Re \nu = \alpha + (1-k_1k_2)/\beta$; (ii) when $\beta = 0$ and the parameter $K = (1-k_1 k_2)/(k_1+k_2)$ is such that $\left |K\right |\neq 1$ then the following relations are valid: $\Re (\nu _n/n) = O\left (1\right )$ and $\Im (\nu _n/n^2) = O\left (1\right )$ as $\left |n\right |\to \infty$; (iii) when $\beta =0$, $|K| = 1$, and $\alpha = 0$, then the following relations are valid: $\Re (\nu _n/n^2) = O\left (1\right )$ and $\Im (\nu _n/n) = O\left (1\right )$ as $\left |n\right |\to \infty$; (iv) when $\beta =0$, $|K| = 1$, and $\alpha>0$, then the following relations are valid: $\Re (\nu _n/\ln \left |n\right |) = O\left (1\right )$ and $\Im (\nu _n/n^2) = O\left (1\right )$ as $\left |n\right |\to \infty$. 
    more » « less