skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Testing homogeneity: the trouble with sparse functional data
Abstract Testing the homogeneity between two samples of functional data is an important task. While this is feasible for intensely measured functional data, we explain why it is challenging for sparsely measured functional data and show what can be done for such data. In particular, we show that testing the marginal homogeneity based on point-wise distributions is feasible under some mild constraints and propose a new two-sample statistic that works well with both intensively and sparsely measured functional data. The proposed test statistic is formulated upon energy distance, and the convergence rate of the test statistic to its population version is derived along with the consistency of the associated permutation test. The aptness of our method is demonstrated on both synthetic and real data sets.  more » « less
Award ID(s):
2210891
PAR ID:
10431328
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of the Royal Statistical Society Series B: Statistical Methodology
Volume:
85
Issue:
3
ISSN:
1369-7412
Page Range / eLocation ID:
p. 705-731
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract With the advance of science and technology, more and more data are collected in the form of functions. A fundamental question for a pair of random functions is to test whether they are independent. This problem becomes quite challenging when the random trajectories are sampled irregularly and sparsely for each subject. In other words, each random function is only sampled at a few time-points, and these time-points vary with subjects. Furthermore, the observed data may contain noise. To the best of our knowledge, there exists no consistent test in the literature to test the independence of sparsely observed functional data. We show in this work that testing pointwise independence simultaneously is feasible. The test statistics are constructed by integrating pointwise distance covariances (Székely et al., 2007) and are shown to converge, at a certain rate, to their corresponding population counterparts, which characterize the simultaneous pointwise independence of two random functions. The performance of the proposed methods is further verified by Monte Carlo simulations and analysis of real data. 
    more » « less
  2. Abstract Hypothesis testing is one of the most common types of data analysis and forms the backbone of scientific research in many disciplines. Analysis of variance (ANOVA) in particular is used to detect dependence between a categorical and a numerical variable. Here we show how one can carry out this hypothesis test under the restrictions of differential privacy. We show that the F -statistic, the optimal test statistic in the public setting, is no longer optimal in the private setting, and we develop a new test statistic F 1 with much higher statistical power. We show how to rigorously compute a reference distribution for the F 1 statistic and give an algorithm that outputs accurate p -values. We implement our test and experimentally optimize several parameters. We then compare our test to the only previous work on private ANOVA testing, using the same effect size as that work. We see an order of magnitude improvement, with our test requiring only 7% as much data to detect the effect. 
    more » « less
  3. Abstract We propose the multiple changepoint isolation (MCI) method for detecting multiple changes in the mean and covariance of a functional process. We first introduce a pair of projections to represent the variability “between” and “within” the functional observations. We then present an augmented fused lasso procedure to split the projections into multiple regions robustly. These regions act to isolate each changepoint away from the others so that the powerful univariate CUSUM statistic can be applied region‐wise to identify the changepoints. Simulations show that our method accurately detects the number and locations of changepoints under many different scenarios. These include light and heavy tailed data, data with symmetric and skewed distributions, sparsely and densely sampled changepoints, and mean and covariance changes. We show that our method outperforms a recent multiple functional changepoint detector and several univariate changepoint detectors applied to our proposed projections. We also show that MCI is more robust than existing approaches and scales linearly with sample size. Finally, we demonstrate our method on a large time series of water vapor mixing ratio profiles from atmospheric emitted radiance interferometer measurements. 
    more » « less
  4. Given a random sample of size n from a p dimensional random vector, we are interested in testing whether the p components of the random vector are mutually independent. This is the so-called complete independence test. In the multivariate normal case, it is equivalent to testing whether the correlation matrix is an identity matrix. In this paper, we propose a one-sided empirical likelihood method for the complete independence test based on squared sample correlation coefficients. The limiting distribution for our one-sided empirical likelihood test statistic is proved to be Z^2I(Z > 0) when both n and p tend to infinity, where Z is a standard normal random variable. In order to improve the power of the empirical likelihood test statistic, we also introduce a rescaled empirical likelihood test statistic. We carry out an extensive simulation study to compare the performance of the rescaled empirical likelihood method and two other statistics. 
    more » « less
  5. ASTRACT Brain-effective connectivity analysis quantifies directed influence of one neural element or region over another, and it is of great scientific interest to understand how effective connectivity pattern is affected by variations of subject conditions. Vector autoregression (VAR) is a useful tool for this type of problems. However, there is a paucity of solutions when there is measurement error, when there are multiple subjects, and when the focus is the inference of the transition matrix. In this article, we study the problem of transition matrix inference under the high-dimensional VAR model with measurement error and multiple subjects. We propose a simultaneous testing procedure, with three key components: a modified expectation-maximization (EM) algorithm, a test statistic based on the tensor regression of a bias-corrected estimator of the lagged auto-covariance given the covariates, and a properly thresholded simultaneous test. We establish the uniform consistency for the estimators of our modified EM, and show that the subsequent test achieves both a consistent false discovery control, and its power approaches one asymptotically. We demonstrate the efficacy of our method through both simulations and a brain connectivity study of task-evoked functional magnetic resonance imaging. 
    more » « less