skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Empirical likelihood method for complete independence test on high-dimensional data
Given a random sample of size n from a p dimensional random vector, we are interested in testing whether the p components of the random vector are mutually independent. This is the so-called complete independence test. In the multivariate normal case, it is equivalent to testing whether the correlation matrix is an identity matrix. In this paper, we propose a one-sided empirical likelihood method for the complete independence test based on squared sample correlation coefficients. The limiting distribution for our one-sided empirical likelihood test statistic is proved to be Z^2I(Z > 0) when both n and p tend to infinity, where Z is a standard normal random variable. In order to improve the power of the empirical likelihood test statistic, we also introduce a rescaled empirical likelihood test statistic. We carry out an extensive simulation study to compare the performance of the rescaled empirical likelihood method and two other statistics.  more » « less
Award ID(s):
1916014
PAR ID:
10355249
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of statistical computation and simulation
ISSN:
0094-9655
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Summary This paper is concerned with empirical likelihood inference on the population mean when the dimension $$p$$ and the sample size $$n$$ satisfy $$p/n\rightarrow c\in [1,\infty)$$. As shown in Tsao (2004), the empirical likelihood method fails with high probability when $p/n>1/2$ because the convex hull of the $$n$$ observations in $$\mathbb{R}^p$$ becomes too small to cover the true mean value. Moreover, when $p> n$, the sample covariance matrix becomes singular, and this results in the breakdown of the first sandwich approximation for the log empirical likelihood ratio. To deal with these two challenges, we propose a new strategy of adding two artificial data points to the observed data. We establish the asymptotic normality of the proposed empirical likelihood ratio test. The proposed test statistic does not involve the inverse of the sample covariance matrix. Furthermore, its form is explicit, so the test can easily be carried out with low computational cost. Our numerical comparison shows that the proposed test outperforms some existing tests for high-dimensional mean vectors in terms of power. We also illustrate the proposed procedure with an empirical analysis of stock data. 
    more » « less
  2. Testing for independence plays a fundamental role in many statistical techniques. Among the nonparametric approaches, the distance-based methods (such as the distance correlation-based hypotheses testing for independence) have many advantages, compared with many other alternatives. A known limitation of the distance-based method is that its computational complexity can be high. In general, when the sample size is n , the order of computational complexity of a distance-based method, which typically requires computing of all pairwise distances, can be O ( n 2 ). Recent advances have discovered that in the univariate cases, a fast method with O ( n  log  n ) computational complexity and O ( n ) memory requirement exists. In this paper, we introduce a test of independence method based on random projection and distance correlation, which achieves nearly the same power as the state-of-the-art distance-based approach, works in the multivariate cases, and enjoys the O ( nK  log  n ) computational complexity and O ( max{ n , K }) memory requirement, where K is the number of random projections. Note that saving is achieved when K < n / log  n . We name our method a Randomly Projected Distance Covariance (RPDC). The statistical theoretical analysis takes advantage of some techniques on the random projection which are rooted in contemporary machine learning. Numerical experiments demonstrate the efficiency of the proposed method, relative to numerous competitors. 
    more » « less
  3. For simultaneous testing of multivariate normal means with known correlation matrix against two-sided alternatives, this paper introduces new methods with proven finite-sample control of false discovery rate. The methods are obtained by shifting each p-value to the left and considering a Benjamini–Hochberg-type linear step-up procedure based on these shifted p-values. The amount of shift for each -value is appropriately determined from the correlation matrix to achieve the desired false discovery rate control. Simulation studies and real-data application show favorable performances of the proposed methods when compared with relevant competitors. 
    more » « less
  4. We consider the problem of inferring the conditional independence graph (CIG) of a high-dimensional stationary multivariate Gaussian time series. In a time series graph, each component of the vector series is represented by distinct node, and associations between components are represented by edges between the corresponding nodes. We formulate the problem as one of multi-attribute graph estimation for random vectors where a vector is associated with each node of the graph. At each node, the associated random vector consists of a time series component and its delayed copies. We present an alternating direction method of multipliers (ADMM) solution to minimize a sparse-group lasso penalized negative pseudo log-likelihood objective function to estimate the precision matrix of the random vector associated with the entire multi-attribute graph. The time series CIG is then inferred from the estimated precision matrix. A theoretical analysis is provided. Numerical results illustrate the proposed approach which outperforms existing frequency-domain approaches in correctly detecting the graph edges. 
    more » « less
  5. Random forest is considered as one of the most successful machine learning algorithms, which has been widely used to construct microbiome-based predictive models. However, its use as a statistical testing method has not been explored. In this study, we propose “Random Forest Test” (RFtest), a global (community-level) test based on random forest for high-dimensional and phylogenetically structured microbiome data. RFtest is a permutation test using the generalization error of random forest as the test statistic. Our simulations demonstrate that RFtest has controlled type I error rates, that its power is superior to competing methods for phylogenetically clustered signals, and that it is robust to outliers and adaptive to interaction effects and non-linear associations. Finally, we apply RFtest to two real microbiome datasets to ascertain whether microbial communities are associated or not with the outcome variables. 
    more » « less