skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Testing independence for sparse longitudinal data
Abstract With the advance of science and technology, more and more data are collected in the form of functions. A fundamental question for a pair of random functions is to test whether they are independent. This problem becomes quite challenging when the random trajectories are sampled irregularly and sparsely for each subject. In other words, each random function is only sampled at a few time-points, and these time-points vary with subjects. Furthermore, the observed data may contain noise. To the best of our knowledge, there exists no consistent test in the literature to test the independence of sparsely observed functional data. We show in this work that testing pointwise independence simultaneously is feasible. The test statistics are constructed by integrating pointwise distance covariances (Székely et al., 2007) and are shown to converge, at a certain rate, to their corresponding population counterparts, which characterize the simultaneous pointwise independence of two random functions. The performance of the proposed methods is further verified by Monte Carlo simulations and analysis of real data.  more » « less
Award ID(s):
2413924 2210891
PAR ID:
10556211
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Biometrika
Volume:
111
Issue:
4
ISSN:
0006-3444
Format(s):
Medium: X Size: p. 1187-1199
Size(s):
p. 1187-1199
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Many real-world applications involve longitudinal data, consisting of observations of several variables, where different subsets of variables are sampled at irregularly spaced time points. We introduce the Longitudinal Gaussian Process Latent Variable Model (L-GPLVM), a variant of the Gaussian Process Latent Variable Model, for learning compact representations of such data. L-GPLVM overcomes a key limitation of the Dynamic Gaussian Process Latent Variable Model and its variants, which rely on the assumption that the data are fully observed over all of the sampled time points. We describe an effective approach to learning the parameters of L-GPLVM from sparse observations, by coupling the dynamical model with a Multitask Gaussian Process model for sampling of the missing observations at each step of the gradient-based optimization of the variational lower bound. We further show the advantage of the Sparse Process Convolution framework to learn the latent representation of sparsely and irregularly sampled longitudinal data with minimal computational overhead relative to a standard Latent Variable Model. We demonstrated experiments with synthetic data as well as variants of MOCAP data with varying degrees of sparsity of observations that show that L-GPLVM substantially and consistently outperforms the state-of-the-art alternatives in recovering the missing observations even when the available data exhibits a high degree of sparsity. The compact representations of irregularly sampled and sparse longitudinal data can be used to perform a variety of machine learning tasks, including clustering, classification, and regression. 
    more » « less
  2. Modern neural interfaces allow access to the activity of up to a million neurons within brain circuits. However, bandwidth limits often create a trade-off between greater spatial sampling (more channels or pixels) and the temporal frequency of sampling. Here we demonstrate that it is possible to obtain spatio-temporal super-resolution in neuronal time series by exploiting relationships among neurons, embedded in latent low-dimensional population dynamics. Our novel neural network training strategy, selective backpropagation through time (SBTT), enables learning of deep generative models of latent dynamics from data in which the set of observed variables changes at each time step. The resulting models are able to infer activity for missing samples by combining observations with learned latent dynamics. We test SBTT applied to sequential autoencoders and demonstrate more efficient and higher-fidelity characterization of neural population dynamics in electrophysiological and calcium imaging data. In electrophysiology, SBTT enables accurate inference of neuronal population dynamics with lower interface bandwidths, providing an avenue to significant power savings for implanted neuroelectronic interfaces. In applications to two-photon calcium imaging, SBTT accurately uncovers high-frequency temporal structure underlying neural population activity, substantially outperforming the current state-of-the-art. Finally, we demonstrate that performance could be further improved by using limited, high-bandwidth sampling to pretrain dynamics models, and then using SBTT to adapt these models for sparsely-sampled data. 
    more » « less
  3. Missing data are ubiquitous in many domain such as healthcare. When these data entries are not missing completely at random, the (conditional) independence relations in the observed data may be different from those in the complete data generated by the underlying causal process.Consequently, simply applying existing causal discovery methods to the observed data may lead to wrong conclusions. In this paper, we aim at developing a causal discovery method to recover the underlying causal structure from observed data that are missing under different mechanisms, including missing completely at random (MCAR),missing at random (MAR), and missing not at random (MNAR). With missingness mechanisms represented by missingness graphs (m-graphs),we analyze conditions under which additional correction is needed to derive conditional independence/dependence relations in the complete data. Based on our analysis, we propose Miss-ing Value PC (MVPC), which extends the PC algorithm to incorporate additional corrections.Our proposed MVPC is shown in theory to give asymptotically correct results even on data that are MAR or MNAR. Experimental results on both synthetic data and real healthcare applications illustrate that the proposed algorithm is able to find correct causal relations even in the general case of MNAR. 
    more » « less
  4. Abstract MotivationGenomic data are subject to various sources of confounding, such as demographic variables, biological heterogeneity, and batch effects. To identify genomic features associated with a variable of interest in the presence of confounders, the traditional approach involves fitting a confounder-adjusted regression model to each genomic feature, followed by multiplicity correction. ResultsThis study shows that the traditional approach is suboptimal and proposes a new two-dimensional false discovery rate control framework (2DFDR+) that provides significant power improvement over the conventional method and applies to a wide range of settings. 2DFDR+ uses marginal independence test statistics as auxiliary information to filter out less promising features, and FDR control is performed based on conditional independence test statistics in the remaining features. 2DFDR+ provides (asymptotically) valid inference from samples in settings where the conditional distribution of the genomic variables given the covariate of interest and the confounders is arbitrary and completely unknown. Promising finite sample performance is demonstrated via extensive simulations and real data applications. Availability and implementationR codes and vignettes are available at https://github.com/asmita112358/tdfdr.np. 
    more » « less
  5. The distribution function is essential in statistical inference and connected with samples to form a directed closed loop by the correspondence theorem in measure theory and the Glivenko-Cantelli and Donsker properties. This connection creates a paradigm for statistical inference. However, existing distribution functions are defined in Euclidean spaces and are no longer convenient to use in rapidly evolving data objects of complex nature. It is imperative to develop the concept of the distribution function in a more general space to meet emerging needs. Note that the linearity allows us to use hypercubes to define the distribution function in a Euclidean space. Still, without the linearity in a metric space, we must work with the metric to investigate the probability measure. We introduce a class of metric distribution functions through the metric only. We overcome this challenging step by proving the correspondence theorem and the Glivenko-Cantelli theorem for metric distribution functions in metric spaces, laying the foundation for conducting rational statistical inference for metric space-valued data. Then, we develop a homogeneity test and a mutual independence test for non-Euclidean random objects and present comprehensive empirical evidence to support the performance of our proposed methods. Supplementary materials for this article are available online. 
    more » « less