skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Frequency Response of Transmission Lines with Unevenly Distributed Properties with Application to Railway Safety Monitoring
This paper proposes a method to efficiently compute the voltage and current along a transmission line which can be “damaged”; that is its electrical properties can be unevenly distributed. The method approximates a transmission line by a self-similar circuit network and leverages our previous work regarding the frequency response for that class of networks. The main motivation arises from research for railway track circuit systems where transmission line models are often employed. Determining deviations from baseline properties of the railway circuit is important for health monitoring of the system and furthermore, changes in circuit properties due to a train occupying a segment of the track also is of great interest as a means to ensure safety. Thus, in addition to monitoring the integrity of the railway circuit, our approach also could provide a means for safe operation in that it can be used to detect segments of the rail system that are occupied by trains.  more » « less
Award ID(s):
1826079
PAR ID:
10431459
Author(s) / Creator(s):
;
Date Published:
Journal Name:
17th International Conference on Control, Automation, Robotics and Vision (ICARCV)
Page Range / eLocation ID:
584 to 589
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transmission line outage detection plays an important role in maintaining the reliability of electric power systems. Most existing methods rely on optimization models to estimate the outage of transmission lines, and the process is computationally burdensome. In this study, we propose a transmission line outage detection method using machine learning. Using this method, we could monitor the power flow of one line and estimate whether another line is in service or not, despite the load fluctuations in the system. The study also investigates the principles for observation point selection and the effectiveness of this method in detecting the outage of transmission lines with different levels of power flows. The method was implemented on an IEEE 118-bus system, and results show that the method is effective for transmission lines with all levels of power flows, and line outage distribution factors (LODF) are good indicators in observation point selection. 
    more » « less
  2. A Reconfigurable Intelligent Surface (RIS) consists of many small reflective elements whose reflection properties can be adjusted to change the wireless propagation environment. Envisioned implementations require that each RIS element be connected to a controller, and as the number of RIS elements on a surface may be on the order of hundreds or more, the number of required electrical connectors creates a difficult wiring problem. A potential solution to this problem was previously proposed by the authors in which “biasing transmission lines” carrying standing waves are sampled at each RIS location to produce the desired bias voltage for each RIS element. This paper presents models for the RIS elements that account for mutual coupling and realistic varactor characteristics, as well as circuit models for sampling the transmission line to generate the RIS control signals. The paper investigates two techniques for conversion of the transmission line standing wave voltage to the varactor bias voltage, namely an envelope detector and a sample-and-hold circuit. The paper also develops a modal decomposition approach for generating standing waves that are able to generate beams and nulls in the resulting RIS radiation pattern that maximize either the Signal-to-Noise Ratio (SNR) or the Signal-to-Leakage-plus-Noise Ratio (SLNR). The paper provides five algorithms, two for the case of the envelope detector, one for the sample-and-hold circuit, one for pursuing the global minimum for both circuits, and one for simultaneous beam and null steering. Extensive simulation results show that while the envelope detector is simpler to implement, the sample-and-hold circuit has substantially better performance and runs in substantially less time. In addition, the wave-controlled RIS is able to generate strong beams and deep nulls in desired directions. This is in contrast with the case of arbitrary control of each varactor element and idealized RIS models. 
    more » « less
  3. We propose methods and an architecture to conduct measurements and optimize newly installed optical fiber line systems semi-automatically using integrated physics-aware technologies in a data center interconnection (DCI) transmission scenario. We demonstrate, for the first time to our knowledge, digital longitudinal monitoring (DLM) and optical line system (OLS) physical parameter calibration working together in real-time to extract physical link parameters for fast optical fiber line systems provisioning. Our methodology has the following advantages over traditional design: a minimized footprint at user sites, accurate estimation of the necessary optical network characteristics via complementary telemetry technologies, and the capability to conduct all operation work remotely. The last feature is crucial, as it enables remote operation to implement network design settings for immediate response to quality of transmission (QoT) degradation and reversion in the case of unforeseen problems. We successfully performed semi-automatic line system provisioning over field fiber network facilities at Duke University, Durham, North Carolina. The tasks of parameter retrieval, equipment setting optimization, and system setup/provisioning were completed within 1 h. The field operation was supervised by on-duty personnel who could access the system remotely from different time zones. By comparing Q-factor estimates calculated from the extracted link parameters with measured results from 400G transceivers, we confirmed that our methodology has a reduction in the QoT prediction errors ( ±0.3dB ) over existing designs ( ±0.6dB ). 
    more » « less
  4. NA (Ed.)
    In this paper, we investigate the operation of an aerial manipulator system, namely an Unmanned Aerial Vehicle (UAV) equipped with a controllable arm with two degrees of freedom to carry out actuation tasks on the fly. Our solution is based on employing a Q-learning method to control the trajectory of the tip of the arm, also called end-effector. More specifically, we develop a motion planning model based on Time To Collision (TTC), which enables a quadrotor UAV to navigate around obstacles while ensuring the manipulator’s reachability. Additionally, we utilize a model-based Q-learning model to independently track and control the desired trajectory of the manipulator’s end-effector, given an arbitrary baseline trajectory for the UAV platform. Such a combination enables a variety of actuation tasks such as high-altitude welding, structural monitoring and repair, battery replacement, gutter cleaning, sky scrapper cleaning, and power line maintenance in hard-to-reach and risky environments while retaining compatibility with flight control firmware. Our RL-based control mechanism results in a robust control strategy that can handle uncertainties in the motion of the UAV, offering promising performance. Specifically, our method achieves 92% accuracy in terms of average displacement error (i.e. the mean distance between the target and obtained trajectory points) using Q-learning with 15,000 episodes. 
    more » « less
  5. In this tutorial paper, we describe some basic principles and practical considerations for designing probe circuits for NMR or MRI. The goal is building a bridge from material that is familiar from undergraduate physics courses to more specialized information needed to put together and tune a resonant circuit for magnetic resonance. After a brief overview of DC and AC circuits, we discuss the properties of circuit elements used in an NMR probe and how they can be assembled into building blocks for multi-channel circuits. We also discuss the use of transmission lines as circuit elements as well as practical considerations for improving circuit stability and power handling. 
    more » « less