In easy-plane magnets, the spin superfluid phase was predicted to facilitate coherent spin transport. So far, experimental evidence remains elusive. In this Letter, we propose an indirect way to sense this effect via the spin superfluid quantum interference device (spin SQUID), inspired by its superconducting counterpart (rf SQUID). The spin SQUID is constructed as a quasi-one-dimensional (1D) magnetic ring with a single Josephson weak link, functioning as an isolated device with a microwave response. The spin current is controlled by an in-plane electric field through Dzyaloshinskii-Moriya interaction. This interaction can be interpreted as a gauge field that couples to the spin supercurrent through the Aharonov-Casher effect. By investigating the static and dynamic properties of the device, we show that the spin current and the harmonic frequencies of the spin superfluid are periodic with respect to the accumulated Aharonov-Casher phase and are, therefore, sensitive to the radial electric flux through the ring in units of an electric flux quantum, suggesting a potential electric-field sensing functionality. For readout, we propose to apply spectroscopic analysis to detect the frequency shift of the harmonic modes induced by this magnonic Stark effect.
more »
« less
Magnonic active ring co-processor
In this work, we consider the possibility of building a magnonic co-processor for special task data processing. Its principle of operation is based on the natural property of an active ring circuit to self-adjust to the resonant frequency. The co-processor comprises a multi-path active ring circuit where the magnetic part is a mesh of magnonic waveguides. Each waveguide acts as a phase shifter and a frequency filter at the same time. Being connected to the external electric part, the system naturally searches for the path which matches the phase of the electric part. This property can be utilized for solving a variety of mathematical problems including prime factorization, bridges of the Konigsberg problem, traveling salesman, etc. We also present experimental data on the proof-of-the-concept experiment demonstrating the spin wave signal re-routing inside a magnonic matrix depending on the position of the electric phase shifter. The magnetic part is a 3 × 3 matrix of waveguides made of single-crystal yttrium iron garnet Y 3 Fe 2 (FeO 4 ) 3 films. The results demonstrate a prominent change in the output power at different ports depending on the position of the electric phase shifter. The described magnonic co-processor is robust, deterministic, and operates at room temperature. The ability to exploit the unique physical properties inherent in spin waves and classical wave superposition may be translated into a huge functional throughput that may exceed [Formula: see text] operations per meter squared per second for [Formula: see text] magnetic mesh. Physical limits and constraints are also discussed.
more »
« less
- Award ID(s):
- 2006290
- PAR ID:
- 10431708
- Date Published:
- Journal Name:
- Journal of Applied Physics
- Volume:
- 133
- Issue:
- 2
- ISSN:
- 0021-8979
- Page Range / eLocation ID:
- 023904
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Magnonic holographic memory is a type of memory that uses spin waves for magnetic bit read-in and read-out. Its operation is based on the interaction between magnets and propagating spin waves where the phase and the amplitude of the spin wave are sensitive to the magnetic field produced by the magnet. Memory states 0 and 1 are associated with the presence/absence of the magnet in a specific location. In this work, we present experimental data showing the feasibility of magnetic bit location using spin waves. The testbed consists of four micro-antennas covered by Y3Fe2(FeO4)3 yttrium iron garnet (YIG) film. A constant in-plane bias magnetic field is provided by NdFeB permanent magnet. The magnetic bit is made of strips of magnetic steel to maximize interaction with propagating spin waves. In the first set of experiments, the position of the bit was concluded by the change produced in the transmittance between two antennas. The minima appear at different frequencies and show different depths for different positions of the bit. In the second set of experiments, two input spin waves were generated, where the phase difference between the waves is controlled by the phase shifter. The minima in the transmitted spectra appear at different phases for different positions of magnetic bit. The utilization of the structured bit enhances its interaction with propagating spin waves and improves recognition fidelity compared to a regular-shaped bit. The recognition accuracy is further improved by exploiting spin wave interference. The depth of the transmission minima corresponding to different magnet positions may exceed 30 dB. All experiments are accomplished at room temperature. Overall, the presented data demonstrate the practical feasibility of using spin waves for magnetic bit red-out. The practical challenges are also discussed.more » « less
-
We report on an all-optical investigation of coupled spin excitation modes in a series of magnetic trilayer structures. Using time-resolved magneto-optic Kerr effect (tr-MOKE) magnetometry, we observe multi-mode coherent spin excitations in [Formula: see text]/Ru/[Formula: see text] multilayers even though the tr-MOKE optical detection is sensitive only to the [Formula: see text] magnetization dynamics. Frequency shifts of the different modes indicate that the coupling between the [Formula: see text] and [Formula: see text] layers varies from anti-ferromagnetic to ferromagnetic to uncoupled as the Ru spacer layer thickness is increased from 8 Å to 200 Å. The lifetime of the high frequency coherent oscillations in the [Formula: see text] layer increases by over 200%–300% even in the case of uncoupled [Formula: see text] and [Formula: see text] layers with a 200 Å thick Ru spacer. The results suggest an additional method to decrease the damping of high-moment alloys in layered magnetic nanostructures.more » « less
-
Density-functional theory is used to validate spin-resolved and orbital-resolved metrics of localized electronic states to anticipate ferroic and dielectric properties of [Formula: see text] and [Formula: see text] under epitaxial strain. Using previous investigations of epitaxial phase stability in these systems, trends in properties such as spontaneous polarization and bandgap are compared to trends in atomic orbital occupation derived from projected density of states. Based on first principles theories of ferroic and dielectric properties, such as the Modern Theory of Polarization for spontaneous polarization or Goodenough–Kanamori theory for magnetic interactions, this work validates the sufficiency of metrics of localized electronic states to predict trends in multiple ferroic and dielectric properties. Capabilities of these metrics include the anticipation of the transition from G-Type to C-Type antiferromagnetism in [Formula: see text] under 4.2% compressive epitaxial strain and the interval of C-Type antiferromagnetism from 3% to 7% tensile epitaxial strain in [Formula: see text]. The results of this work suggest a capability of localized electronic metrics to predict multiferroic characteristics in the Bi X[Formula: see text] systems under epitaxial strain, with single or mixed B-site occupation.more » « less
-
Magneto-intersubband resistance oscillations (MISOs) of highly mobile 2D electrons in symmetric GaAs quantum wells with two populated subbands are studied in magnetic fields [Formula: see text] tilted from the normal to the 2D electron layer at different temperatures [Formula: see text]. The in-plane component ([Formula: see text]) of the field [Formula: see text] induces magnetic entanglement between subbands, leading to beating in oscillating density of states (DOS) and to MISO suppression. Model of the MISO suppression is proposed. Within the model, a comparison of MISO amplitude in the entangled and disentangled ([Formula: see text]) 2D systems yields both difference frequency of DOS oscillations, [Formula: see text], and strength of the electron–electron interaction, described by parameter [Formula: see text], in the 2D system. These properties are analyzed using two methods, yielding consistent but not identical results for both [Formula: see text] and [Formula: see text]. The analysis reveals an additional angular dependent factor of MISO suppression. The factor is related to spin splitting of quantum levels in magnetic fields.more » « less
An official website of the United States government

