Multicomponent refractory alloys have the potential to operate in high-temperature environments. Alloys with heterogeneous/composite microstructure exhibit an optimal combination of high strength and ductility. The present work generates designed compositions using high-throughput computational and machine-learning (ML) models based on elements Mo-Nb-Ti-V-W-Zr manufactured utilizing vacuum arc melting. The experimentally observed phases were consistent with CALPHAD and Scheil simulations. ML models were used to predict the room temperature mechanical properties of the alloy and were validated with experimental mechanical data obtained from the three-point bending and compression tests. This work collectively showcases a data-driven, inverse design methodology that can effectively identify new promising multicomponent refractory alloys. 
                        more » 
                        « less   
                    
                            
                            Machine learning prediction of the mechanical properties of refractory multicomponent alloys based on a dataset of phase and first principles simulation
                        
                    
    
            In this work, a dataset including structural and mechanical properties of refractory multicomponent alloys was developed by fusing computations of phase diagram (CALPHAD) and density functional theory (DFT). The refractory multicomponent alloys, also named refractory complex concentrated alloys (CCAs) which contain 2–5 types of refractory elements were constructed based on Special Quasi-random Structure (SQS). The phase of alloys was predicted using CALPHAD and the mechanical property of alloys with stable and single body-centered cubic (BCC) at high temperature (over 1,500°C) was investigated using DFT-based simulation. As a result, a dataset with 393 refractory alloys and 12 features, including volume, melting temperature, density, energy, elastic constants, mechanical moduli, and hardness, were produced. To test the capability of the dataset on supporting machine learning (ML) study to investigate the property of CCAs, CALPHAD, and DFT calculations were compared with principal components analysis (PCA) technique and rule of mixture (ROM), respectively. It is demonstrated that the CALPHAD and DFT results are more in line with experimental observations for the alloy phase, structural and mechanical properties. Furthermore, the data were utilized to train a verity of ML models to predict the performance of certain CCAs with advanced mechanical properties, highlighting the usefulness of the dataset for ML technique on CCA property prediction. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2019511
- PAR ID:
- 10431755
- Date Published:
- Journal Name:
- Frontiers in Metals and Alloys
- Volume:
- 1
- ISSN:
- 2813-2459
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Multi-principal-element alloys (MPEAs) based on 3d-transition metals show remarkable mechanical properties. The stacking fault energy (SFE) in face-centered cubic (fcc) alloys is a critical property that controls underlying deformation mechanisms and mechanical response. Here, we present an exhaustive density-functional theory study on refractory- and copper-reinforced Cantor-based systems to ascertain the effects of refractory metal chemistry on SFE. We find that even a small percent change in refractory metal composition significantly changes SFEs, which correlates favorably with features like electronegativity variance, size effect, and heat of fusion. For fcc MPEAs, we also detail the changes in mechanical properties, such as bulk, Young’s, and shear moduli, as well as yield strength. A Labusch-type solute-solution-strengthening model was used to evaluate the temperature-dependent yield strength, which, combined with SFE, provides a design guide for high-performance alloys. We also analyzed the electronic structures of two down-selected alloys to reveal the underlying origin of optimal SFE and strength range in refractory-reinforced fcc MPEAs. These new insights on tuning SFEs and modifying composition-structure-property correlation in refractory- and copper-reinforced MPEAs by chemical disorder, provide a chemical route to tune twinning- and transformation-induced plasticity behavior.more » « less
- 
            Additive Manufacturing (AM) has opened new frontiers for the design of refractory high-entropy alloys (HEAs) for high-temperature applications. The thermal conductivity of the AM feedstock is among the most important thermo-physical properties that control the melting and solidification process. Despite its significance, there remains a notable gap in both computational and experimental research concerning the thermal conductivity of HEAs. Here, we use density functional theory (DFT) to systematically investigate the alloying effects on the transport properties of Ti-Cr-Mo-W-V-Nb-Ta RHEAs, including electrical and thermal conductivities and the Seebeck coefficient. The relaxation time of charge carriers is a key underlying parameter determining thermal conductivity that is exceedingly challenging to predict from first principles alone, and we thus follow the approach by Mukherjee, Satsangi, and Singh [Chem Mater 32, 6507 (2022)] to optimize the relaxation time for RHEAs. We validated thermal conductivity predictions on elemental solids, binary and ternary alloys, and RHEAs and compared them against thermodynamic (CALPHAD) predictions and our experiments with good correlations. To understand observed trends in thermal conductivity, we assessed the phase stability, electronic structure, phonon, and intrinsic- and tensile strength of down-selected RHEAs. Our electronic structure and phonon results connect well with the observed compositional trends for thermal transport in RHEAs. Our DFT assessment and CALPHAD predictions provide a unique design guide for RHEAs with tailored thermal conductivity, a critical consideration for AM and thermal-management applications.more » « less
- 
            Refractory complex concentrated alloys (RCCAs) have drawn increasing attention recently owing to their balanced mechanical properties, including excellent creep resistance, ductility, and oxidation resistance. The mechanical and thermal properties of RCCAs are directly linked with the elastic constants. However, it is time consuming and expensive to obtain the elastic constants of RCCAs with conventional trial-and-error experiments. The elastic constants of RCCAs are predicted using a combination of density functional theory simulation data and machine learning (ML) algorithms in this study. The elastic constants of several RCCAs are predicted using the random forest regressor, gradient boosting regressor (GBR), and XGBoost regression models. Based on performance metrics R-squared, mean average error and root mean square error, the GBR model was found to be most promising in predicting the elastic constant of RCCAs among the three ML models. Additionally, GBR model accuracy was verified using the other four RHEAs dataset which was never seen by the GBR model, and reasonable agreements between ML prediction and available results were found. The present findings show that the GBR model can be used to predict the elastic constant of new RHEAs more accurately without performing any expensive computational and experimental work.more » « less
- 
            Exploiting Chemical Short-Range Order (CSRO) is a promising avenue for manipulating the properties of alloys. However, existing modeling frameworks are not sufficient to predict CSRO in multicomponent alloys (>3 components) in an efficient and reliable manner. In this work, we developed a hybrid computational thermodynamics framework by combining unique advantages from Cluster Variation Method (CVM) and CALculation of PHAse Diagram (CALPHAD) method. The key is to decompose the cumbersome cluster variables in CVM into fewer site variables of the basic cluster using the Fowler-Yang-Li (FYL) transform, which considerably reduces the number of variables that must be minimized for multicomponent systems. CSRO is incorporated into CALPHAD with a novel cluster-based solution model called FYL-CVM. This new framework brings more physics into CALPHAD while maintaining its practicality and achieves a good balance between accuracy and computational cost. It leverages statistical mechanics to yield a more physical description of configurational entropy and opens the door to cluster-based CALPHAD database development. The application of the FYL-CVM model in a prototype fcc AB alloy demonstrates its capability to calculate the phase diagram and thermodynamic properties with remarkable accuracy comparable to CVM. The hybrid CVM-CALPHAD framework represents a new methodology for thermodynamic modeling that enables atomic-scale order to be exploited for materials design.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    