Abstract As a key water quality parameter, dissolved oxygen (DO) concentration, and particularly changes in bottom water DO is fundamental for understanding the biogeochemical processes in lake ecosystems. Based on two machine learning (ML) models, Gradient Boost Regressor (GBR) and long‐short‐term‐memory (LSTM) network, this study developed three ML model approaches: direct GBR; direct LSTM; and a 2‐step mixed ML model workflow combining both GBR and LSTM. They were used to simulate multi‐year surface and bottom DO concentrations in five lakes. All approaches were trained with readily available environmental data as predictors. Indices of lake thermal structure and mixing provided by a one‐dimensional (1‐D) hydrodynamic model were also included as predictors in the ML models. The advantages of each ML approach were not consistent for all the tested lakes, but the best one of them was defined that can estimate DO concentration with coefficient of determination (R2) up to 0.6–0.7 in each lake. All three approaches have normalized mean absolute error (NMAE) under 0.15. In a polymictic lake, the 2‐step mixed model workflow showed better representation of bottom DO concentrations, with a highest true positive rate (TPR) of hypolimnetic hypoxia detection of over 90%, while the other workflows resulted in, TPRs are around 50%. In most of the tested lakes, the predicted surface DO concentrations and variables indicating stratified conditions (i.e., Wedderburn number and the temperature difference between surface and bottom water) are essential for simulating bottom DO. The ML approaches showed promising results and could be used to support short‐ and long‐term water management plans. 
                        more » 
                        « less   
                    
                            
                            Predicting Elastic Constants of Refractory Complex Concentrated Alloys Using Machine Learning Approach
                        
                    
    
            Refractory complex concentrated alloys (RCCAs) have drawn increasing attention recently owing to their balanced mechanical properties, including excellent creep resistance, ductility, and oxidation resistance. The mechanical and thermal properties of RCCAs are directly linked with the elastic constants. However, it is time consuming and expensive to obtain the elastic constants of RCCAs with conventional trial-and-error experiments. The elastic constants of RCCAs are predicted using a combination of density functional theory simulation data and machine learning (ML) algorithms in this study. The elastic constants of several RCCAs are predicted using the random forest regressor, gradient boosting regressor (GBR), and XGBoost regression models. Based on performance metrics R-squared, mean average error and root mean square error, the GBR model was found to be most promising in predicting the elastic constant of RCCAs among the three ML models. Additionally, GBR model accuracy was verified using the other four RHEAs dataset which was never seen by the GBR model, and reasonable agreements between ML prediction and available results were found. The present findings show that the GBR model can be used to predict the elastic constant of new RHEAs more accurately without performing any expensive computational and experimental work. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1946231
- PAR ID:
- 10403738
- Date Published:
- Journal Name:
- Materials
- Volume:
- 15
- Issue:
- 14
- ISSN:
- 1996-1944
- Page Range / eLocation ID:
- 4997
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            In this work, a dataset including structural and mechanical properties of refractory multicomponent alloys was developed by fusing computations of phase diagram (CALPHAD) and density functional theory (DFT). The refractory multicomponent alloys, also named refractory complex concentrated alloys (CCAs) which contain 2–5 types of refractory elements were constructed based on Special Quasi-random Structure (SQS). The phase of alloys was predicted using CALPHAD and the mechanical property of alloys with stable and single body-centered cubic (BCC) at high temperature (over 1,500°C) was investigated using DFT-based simulation. As a result, a dataset with 393 refractory alloys and 12 features, including volume, melting temperature, density, energy, elastic constants, mechanical moduli, and hardness, were produced. To test the capability of the dataset on supporting machine learning (ML) study to investigate the property of CCAs, CALPHAD, and DFT calculations were compared with principal components analysis (PCA) technique and rule of mixture (ROM), respectively. It is demonstrated that the CALPHAD and DFT results are more in line with experimental observations for the alloy phase, structural and mechanical properties. Furthermore, the data were utilized to train a verity of ML models to predict the performance of certain CCAs with advanced mechanical properties, highlighting the usefulness of the dataset for ML technique on CCA property prediction.more » « less
- 
            Abstract Land surface temperature (LST) is crucial for understanding earth system processes. We expanded the Advanced Baseline Imager Live Imaging of Vegetated Ecosystems (ALIVE) framework to estimate LST in near‐real‐time for both cloudy and clear sky conditions at a five‐minute resolution. We compared two machine learning (ML) models, Long Short‐Term Memory (LSTM) networks and Gradient Boosting Regressor (GBR), using top‐of‐atmosphere observations from the Advanced Baseline Imager (ABI) on the GOES‐16 satellite against observations from hundreds of observation sites for a five‐year period. Long Short‐Term Memory outperformed GBR, especially at coarser resolutions and under challenging conditions, with a clear sky R2of 0.96 (RMSE 2.31K) and a cloudy sky R2of 0.83 (RMSE 4.10K) across CONUS, based on 10‐repeat Leave‐One‐Out Cross‐Validation (LOOCV). GBR maintained high accuracy and ran 5.3 times faster, with only a 0.01–0.02 R2drop. Feature importance revealed infrared bands were key in both models, with LSTM adapting dynamically to atmospheric changes, while GBR utilized more time information in cloudy conditions. A comparative analysis against the physically based ABILSTproduct showed strong agreement in winter, particularly under clear sky conditions, while also highlighting the challenges of summer LST estimation due to increased thermal variability. This study underscores the strengths and limitations of data‐driven models for LST estimation and suggests potential pathways for integrating ML models to enhance the accuracy and coverage of LST products.more » « less
- 
            null (Ed.)Hardness is an essential property in the design of refractory high entropy alloys (RHEAs). This study shows how a neural network (NN) model can be used to predict the hardness of a RHEA, for the first time. We predicted the hardness of several alloys, including the novel C0.1Cr3Mo11.9Nb20Re15Ta30W20 using the NN model. The hardness predicted from the NN model was consistent with the available experimental results. The NN model prediction of C0.1Cr3Mo11.9Nb20Re15Ta30W20 was verified by experimentally synthesizing and investigating its microstructure properties and hardness. This model provides an alternative route to determine the Vickers hardness of RHEAs.more » « less
- 
            Monolayer films have shown promise as a lubricating layer to reduce friction and wear of mechanical devices with separations on the nanoscale. These films have a vast design space with many tunable properties that can affect their tribological effectiveness. For example, terminal group chemistry, film composition, and backbone chemistry can all lead to films with significantly different tribological properties. This design space, however, is very difficult to explore without a combinatorial approach and an automatable, reproducible, and extensible workflow to screen for promising candidate films. Using the Molecular Simulation Design Framework (MoSDeF), a combinatorial screening study was performed to explore 9747 unique monolayer films (116 964 total simulations) and a machine learning (ML) model using a random forest regressor, an ensemble learning technique, to explore the role of terminal group chemistry and its effect on tribological effectiveness. The most promising films were found to contain small terminal groups such as cyano and ethylene. The ML model was subsequently applied to screen terminal group candidates identified from the ChEMBL small molecule library. Approximately 193 131 unique film candidates were screened with approximately a five order of magnitude speed-up in analysis compared to simulation alone. The ML model was thus able to be used as a predictive tool to greatly speed up the initial screening of promising candidate films for future simulation studies, suggesting that computational screening in combination with ML can greatly increase the throughput in combinatorial approaches to generate in silico data and then train ML models in a controlled, self-consistent fashion.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    