skip to main content


This content will become publicly available on August 31, 2024

Title: Type Information Utilized Event Detection via Multi-Channel GNNs in Electrical Power Systems
Event detection in power systems aims to identify triggers and event types, which helps relevant personnel respond to emergencies promptly and facilitates the optimization of power supply strategies. However, the limited length of short electrical record texts causes severe information sparsity, and numerous domain-specific terminologies of power systems makes it difficult to transfer knowledge from language models pre-trained on general-domain texts. Traditional event detection approaches primarily focus on the general domain and ignore these two problems in the power system domain. To address the above issues, we propose a Multi-Channel graph neural network utilizing Type information for Event Detection in power systems, named MC-TED , leveraging a semantic channel and a topological channel to enrich information interaction from short texts. Concretely, the semantic channel refines textual representations with semantic similarity, building the semantic information interaction among potential event-related words. The topological channel generates a relation-type-aware graph modeling word dependencies, and a word-type-aware graph integrating part-of-speech tags. To further reduce errors worsened by professional terminologies in type analysis, a type learning mechanism is designed for updating the representations of both the word type and relation type in the topological channel. In this way, the information sparsity and professional term occurrence problems can be alleviated by enabling interaction between topological and semantic information. Furthermore, to address the lack of labeled data in power systems, we built a Chinese event detection dataset based on electrical Power Event texts, named PoE . In experiments, our model achieves compelling results not only on the PoE dataset, but on general-domain event detection datasets including ACE 2005 and MAVEN.  more » « less
Award ID(s):
2100237
NSF-PAR ID:
10431883
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
ACM Transactions on the Web
Volume:
17
Issue:
3
ISSN:
1559-1131
Page Range / eLocation ID:
1 to 26
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Discovering the latent topics within texts has been a fundamental task for many applica- tions. However, conventional topic models suffer different problems in different settings. The Latent Dirichlet Allocation (LDA) may not work well for short texts due to the data sparsity (i.e., the sparse word co-occurrence patterns in short documents). The Biterm Topic Model (BTM) learns topics by mod- eling the word-pairs named biterms in the whole corpus. This assumption is very strong when documents are long with rich topic in- formation and do not exhibit the transitivity of biterms. In this paper, we propose a novel way called GraphBTM to represent biterms as graphs and design Graph Convolutional Net- works (GCNs) with residual connections to extract transitive features from biterms. To overcome the data sparsity of LDA and the strong assumption of BTM, we sample a fixed number of documents to form a mini-corpus as a training instance. We also propose a dataset called All News extracted from (Thompson, 2017), in which documents are much longer than 20 Newsgroups. We present an amortized variational inference method for GraphBTM. Our method generates more coherent topics compared with previous approaches. Exper- iments show that the sampling strategy im- proves performance by a large margin. 
    more » « less
  2. Discovering the latent topics within texts has been a fundamental task for many applica- tions. However, conventional topic models suffer different problems in different settings. The Latent Dirichlet Allocation (LDA) may not work well for short texts due to the data sparsity (i.e., the sparse word co-occurrence patterns in short documents). The Biterm Topic Model (BTM) learns topics by mod- eling the word-pairs named biterms in the whole corpus. This assumption is very strong when documents are long with rich topic in- formation and do not exhibit the transitivity of biterms. In this paper, we propose a novel way called GraphBTM to represent biterms as graphs and design Graph Convolutional Net- works (GCNs) with residual connections to extract transitive features from biterms. To overcome the data sparsity of LDA and the strong assumption of BTM, we sample a fixed number of documents to form a mini-corpus as a training instance. We also propose a dataset called All News extracted from (Thompson, 2017), in which documents are much longer than 20 Newsgroups. We present an amortized variational inference method for GraphBTM. Our method generates more coherent topics compared with previous approaches. Exper- iments show that the sampling strategy im- proves performance by a large margin. 
    more » « less
  3. Agrawal, Garima (Ed.)
    Cybersecurity education is exceptionally challenging as it involves learning the complex attacks; tools and developing critical problem-solving skills to defend the systems. For a student or novice researcher in the cybersecurity domain, there is a need to design an adaptive learning strategy that can break complex tasks and concepts into simple representations. An AI-enabled automated cybersecurity education system can improve cognitive engagement and active learning. Knowledge graphs (KG) provide a visual representation in a graph that can reason and interpret from the underlying data, making them suitable for use in education and interactive learning. However, there are no publicly available datasets for the cybersecurity education domain to build such systems. The data is present as unstructured educational course material, Wiki pages, capture the flag (CTF) writeups, etc. Creating knowledge graphs from unstructured text is challenging without an ontology or annotated dataset. However, data annotation for cybersecurity needs domain experts. To address these gaps, we made three contributions in this paper. First, we propose an ontology for the cybersecurity education domain for students and novice learners. Second, we develop AISecKG, a triple dataset with cybersecurity-related entities and relations as defined by the ontology. This dataset can be used to construct knowledge graphs to teach cybersecurity and promote cognitive learning. It can also be used to build downstream applications like recommendation systems or self-learning question-answering systems for students. The dataset would also help identify malicious named entities and their probable impact. Third, using this dataset, we show a downstream application to extract custom-named entities from texts and educational material on cybersecurity. 
    more » « less
  4. Scene graph generation refers to the task of automatically mapping an image into a semantic structural graph, which requires correctly labeling each extracted object and their interaction relationships. Despite the recent success in object detection using deep learning techniques, inferring complex contextual relationships and structured graph representations from visual data remains a challenging topic. In this study, we propose a novel Attentive Relational Network that consists of two key modules with an object detection backbone to approach this problem. The first module is a semantic transformation module utilized to capture semantic embedded relation features, by translating visual features and linguistic features into a common semantic space. The other module is a graph self-attention module introduced to embed a joint graph representation through assigning various importance weights to neighboring nodes. Finally, accurate scene graphs are produced by the relation inference module to recognize all entities and the corresponding relations. We evaluate our proposed method on the widely-adopted Visual Genome dataset, and the results demonstrate the effectiveness and superiority of our model. 
    more » « less
  5. null (Ed.)
    Definition Extraction (DE) is one of the well-known topics in Information Extraction that aims to identify terms and their corresponding definitions in unstructured texts. This task can be formalized either as a sentence classification task (i.e., containing term-definition pairs or not) or a sequential labeling task (i.e., identifying the boundaries of the terms and definitions). The previous works for DE have only focused on one of the two approaches, failing to model the inter-dependencies between the two tasks. In this work, we propose a novel model for DE that simultaneously performs the two tasks in a single framework to benefit from their inter-dependencies. Our model features deep learning architectures to exploit the global structures of the input sentences as well as the semantic consistencies between the terms and the definitions, thereby improving the quality of the representation vectors for DE. Besides the joint inference between sentence classification and sequential labeling, the proposed model is fundamentally different from the prior work for DE in that the prior work has only employed the local structures of the input sentences (i.e., word-to-word relations), and not yet considered the semantic consistencies between terms and definitions. In order to implement these novel ideas, our model presents a multi-task learning framework that employs graph convolutional neural networks and predicts the dependency paths between the terms and the definitions. We also seek to enforce the consistency between the representations of the terms and definitions both globally (i.e., increasing semantic consistency between the representations of the entire sentences and the terms/definitions) and locally (i.e., promoting the similarity between the representations of the terms and the definitions). The extensive experiments on three benchmark datasets demonstrate the effectiveness of our approach.1 
    more » « less