- PAR ID:
- 10432250
- Date Published:
- Journal Name:
- Proceedings of ICRA 2023. IEEE International Conference on Robotics and Automation
- Page Range / eLocation ID:
- 1221 to 1227
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We propose a new algorithm to simplify the controller development for distributed robotic systems subject to external observations, disturbances, and communication delays. Unlike prior approaches that propose specialized solutions to handling communication latency for specific robotic applications, our algorithm uses an arbitrary centralized controller as the specification and automatically generates distributed controllers with communication management and delay compensation. We formulate our goal as nonlinear optimal control— using a regret minimizing objective that measures how much the distributed agents behave differently from the delay-free centralized response—and solve for optimal actions w.r.t. local estimations of this objective using gradient-based optimization. We analyze our proposed algorithm’s behavior under a linear time-invariant special case and prove that the closed-loop dynamics satisfy a form of input-to-state stability w.r.t. unexpected disturbances and observations. Our experimental results on both simulated and real-world robotic tasks demonstrate the practical usefulness of our approach and show significant improvement over several baseline approaches.more » « less
-
We propose a new algorithm to simplify the controller development for distributed robotic systems subject to external observations, disturbances, and communication delays. Unlike prior approaches that propose specialized solutions to handling communication latency for specific robotic applications, our algorithm uses an arbitrary centralized controller as the specification and automatically generates distributed controllers with communication management and delay compensation. We formulate our goal as nonlinear optimal control— using a regret minimizing objective that measures how much the distributed agents behave differently from the delay-free centralized response—and solve for optimal actions w.r.t. local estimations of this objective using gradient-based optimization. We analyze our proposed algorithm’s behavior under a linear time-invariant special case and prove that the closed-loop dynamics satisfy a form of input-to-state stability w.r.t. unexpected disturbances and observations. Our experimental results on both simulated and real-world robotic tasks demonstrate the practical usefulness of our approach and show significant improvement over several baseline approaches.more » « less
-
Abstract This paper aims to develop a distributed layered control framework for the navigation, planning, and control of multi-agent quadrupedal robots subject to environments with uncertain obstacles and various disturbances. At the highest layer of the proposed layered control, a reference path for all agents is calculated, considering artificial potential fields (APF) under a priori known obstacles. Second, in the middle layer, we employ a distributed nonlinear model predictive control (NMPC) scheme with a one-step delay communication protocol (OSDCP) subject to reduced-order and linear inverted pendulum (LIP) models of agents to ensure the feasibility of the gaits and collision avoidance, addressing the degree of uncertainty in real-time. Finally, low-level nonlinear whole-body controllers (WBCs) impose the full-order locomotion models of agents to track the optimal and reduced-order trajectories. The proposed controller is validated for effectiveness and robustness on up to four A1 quadrupedal robots in simulations and two robots in the experiments.1 Simulations and experimental validations demonstrate that the proposed approach can effectively address the real-time planning and control problem. In particular, multiple A1 robots are shown to navigate various environments, maintaining collision-free distances while being subject to unknown external disturbances such as pushes and rough terrain.
-
We present distributed distance-based control (DDC), a novel approach for controlling a multi-agent system, such that it achieves a desired formation, in a resource-constrained setting. Our controller is fully distributed and only requires local state-estimation and scalar measurements of inter-agent distances. It does not require an external localization system or inter-agent exchange of state information. Our approach uses spatial- predictive control (SPC), to optimize a cost function given strictly in terms of inter-agent distances and the distance to the target location. In DDC, each agent continuously learns and updates a very abstract model of the actual system, in the form of a dictionary of three independent key-value pairs (~s, d), where d is the partial derivative of the distance measurements along a spatial direction ~s. This is sufficient for an agent to choose the best next action. We validate our approach by using DDC to control a collection of Crazyflie drones to achieve formation flight and reach a target while maintaining flock formation.more » « less
-
We consider the problem of optimal control of district cooling energy plants (DCEPs) consisting of multiple chillers, a cooling tower, and a thermal energy storage (TES), in the presence of time-varying electricity price. A straightforward application of model predictive control (MPC) requires solving a challenging mixed-integer nonlinear program (MINLP) because of the on/off of chillers and the complexity of the DCEP model. Reinforcement learning (RL) is an attractive alternative since its real-time control computation is much simpler. But designing an RL controller is challenging due to myriad design choices and computationally intensive training. In this paper, we propose an RL controller and an MPC controller for minimizing the electricity cost of a DCEP and compare them via simulations. The two controllers are designed to be comparable in terms of objective and information requirements. The RL controller uses a novel Q-learning algorithm that is based on least-squares policy iteration. We describe the design choices for the RL controller, including the choice of state space and basis functions, that are found to be effective. The proposed MPC controller does not need a mixed integer solver for implementation, but only a nonlinear program (NLP) solver. A rule-based baseline controller is also proposed to aid in comparison. Simulation results show that the proposed RL and MPC controllers achieve similar savings over the baseline controller, about 17%.more » « less