skip to main content


Title: Multi-Agent Spatial Predictive Control with Application to Drone Flocking
We introduce Spatial Predictive Control (SPC), a technique for solving the following problem: given a collection of robotic agents with black-box positional low-level controllers (PLLCs) and a mission-specific distributed cost function, how can a distributed controller achieve and maintain cost-function minimization without a plant model and only positional observations of the environment? Our fully distributed SPC controller is based strictly on the position of the agent itself and on those of its neighboring agents. This information is used in every time step to compute the gradient of the cost function and to perform a spatial look-ahead to predict the best next target position for the PLLC. Using a simulation environment, we show that SPC outperforms Potential Field Controllers, a related class of controllers, on the drone flocking problem. We also show that SPC works on real hardware, and is therefore able to cope with the potential sim-to-real transfer gap. We demonstrate its performance using as many as 16 Crazyflie 2.1 drones in a number of scenarios, including obstacle avoidance.  more » « less
Award ID(s):
1918225 1954837
PAR ID:
10432250
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of ICRA 2023. IEEE International Conference on Robotics and Automation
Page Range / eLocation ID:
1221 to 1227
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a new algorithm to simplify the controller development for distributed robotic systems subject to external observations, disturbances, and communication delays. Unlike prior approaches that propose specialized solutions to handling communication latency for specific robotic applications, our algorithm uses an arbitrary centralized controller as the specification and automatically generates distributed controllers with communication management and delay compensation. We formulate our goal as nonlinear optimal control— using a regret minimizing objective that measures how much the distributed agents behave differently from the delay-free centralized response—and solve for optimal actions w.r.t. local estimations of this objective using gradient-based optimization. We analyze our proposed algorithm’s behavior under a linear time-invariant special case and prove that the closed-loop dynamics satisfy a form of input-to-state stability w.r.t. unexpected disturbances and observations. Our experimental results on both simulated and real-world robotic tasks demonstrate the practical usefulness of our approach and show significant improvement over several baseline approaches. 
    more » « less
  2. We propose a new algorithm to simplify the controller development for distributed robotic systems subject to external observations, disturbances, and communication delays. Unlike prior approaches that propose specialized solutions to handling communication latency for specific robotic applications, our algorithm uses an arbitrary centralized controller as the specification and automatically generates distributed controllers with communication management and delay compensation. We formulate our goal as nonlinear optimal control— using a regret minimizing objective that measures how much the distributed agents behave differently from the delay-free centralized response—and solve for optimal actions w.r.t. local estimations of this objective using gradient-based optimization. We analyze our proposed algorithm’s behavior under a linear time-invariant special case and prove that the closed-loop dynamics satisfy a form of input-to-state stability w.r.t. unexpected disturbances and observations. Our experimental results on both simulated and real-world robotic tasks demonstrate the practical usefulness of our approach and show significant improvement over several baseline approaches. 
    more » « less
  3. We consider the problem of optimal control of district cooling energy plants (DCEPs) consisting of multiple chillers, a cooling tower, and a thermal energy storage (TES), in the presence of time-varying electricity price. A straightforward application of model predictive control (MPC) requires solving a challenging mixed-integer nonlinear program (MINLP) because of the on/off of chillers and the complexity of the DCEP model. Reinforcement learning (RL) is an attractive alternative since its real-time control computation is much simpler. But designing an RL controller is challenging due to myriad design choices and computationally intensive training. In this paper, we propose an RL controller and an MPC controller for minimizing the electricity cost of a DCEP and compare them via simulations. The two controllers are designed to be comparable in terms of objective and information requirements. The RL controller uses a novel Q-learning algorithm that is based on least-squares policy iteration. We describe the design choices for the RL controller, including the choice of state space and basis functions, that are found to be effective. The proposed MPC controller does not need a mixed integer solver for implementation, but only a nonlinear program (NLP) solver. A rule-based baseline controller is also proposed to aid in comparison. Simulation results show that the proposed RL and MPC controllers achieve similar savings over the baseline controller, about 17%. 
    more » « less
  4. We present distributed distance-based control (DDC), a novel approach for controlling a multi-agent system, such that it achieves a desired formation, in a resource-constrained setting. Our controller is fully distributed and only requires local state-estimation and scalar measurements of inter-agent distances. It does not require an external localization system or inter-agent exchange of state information. Our approach uses spatial- predictive control (SPC), to optimize a cost function given strictly in terms of inter-agent distances and the distance to the target location. In DDC, each agent continuously learns and updates a very abstract model of the actual system, in the form of a dictionary of three independent key-value pairs (~s, d), where d is the partial derivative of the distance measurements along a spatial direction ~s. This is sufficient for an agent to choose the best next action. We validate our approach by using DDC to control a collection of Crazyflie drones to achieve formation flight and reach a target while maintaining flock formation. 
    more » « less
  5. Despite the potential benefits of collaborative robots, effective manipulation tasks with quadruped robots remain difficult to realize. In this paper, we propose a hierarchical control system that can handle real-world collaborative manipulation tasks, including uncertainties arising from object properties, shape, and terrain. Our approach consists of three levels of controllers. Firstly, an adaptive controller computes the required force and moment for object manipulation without prior knowledge of the object's properties and terrain. The computed force and moment are then optimally distributed between the team of quadruped robots using a Quadratic Programming (QP)-based controller. This QP-based controller optimizes each robot's contact point location with the object while satisfying constraints associated with robot-object contact. Finally, a decentralized loco-manipulation controller is designed for each robot to apply manipulation force while maintaining the robot's stability. We successfully validated our approach in a high-fidelity simulation environment where a team of quadruped robots manipulated an unknown object weighing up to 18 kg on different terrains while following the desired trajectory. 
    more » « less