skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Probabilistic Symmetry for Multi-Agent Dynamics
Learning multi-agent dynamics is a core AI problem with broad applications in robotics and autonomous driving. While most existing works focus on deterministic prediction, producing probabilistic forecasts to quantify uncertainty and assess risks is critical for downstream decision-making tasks such as motion planning and collision avoidance. Multi-agent dynamics often contains internal symmetry. By leveraging symmetry, specifically rotation equivariance, we can improve not only the prediction accuracy but also uncertainty calibration. We introduce Energy Score, a proper scoring rule, to evaluate probabilistic predictions. We propose a novel deep dynamics model, Probabilistic Equivariant Continuous COnvolution (PECCO) for probabilistic prediction of multi-agent trajectories. PECCO extends equivariant continuous convolution to model the joint velocity distribution of multiple agents. It uses dynamics integration to propagate the uncertainty from velocity to position. On both synthetic and real-world datasets, PECCO shows significant improvements in accuracy and calibration compared to non-equivariant baselines.  more » « less
Award ID(s):
2134178
PAR ID:
10432329
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of The 5th Annual Learning for Dynamics and Control Conference
Volume:
211
ISSN:
2640-3498
Page Range / eLocation ID:
1231--1244
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To achieve this, we draw inspiration from equivariant convolution networks and model the path planning problem as a set of signals over grids. We demonstrate that value iteration can be treated as a linear equivariant operator, which is effectively a steerable convolution. Building upon Value Iteration Networks (VIN), we propose a new Symmetric Planning (SymPlan) framework that incorporates rotation and reflection symmetry using steerable convolution networks. We evaluate our approach on four tasks: 2D navigation, visual navigation, 2 degrees of freedom (2-DOF) configuration space manipulation, and 2-DOF workspace manipulation. Our experimental results show that our symmetric planning algorithms significantly improve training efficiency and generalization performance compared to non-equivariant baselines, including VINs and GPPN. 
    more » « less
  2. Liquefaction under cyclic loads can be predicted through advanced (liquefaction-capable) material constitutive models. However, such constitutive models have several input parameters whose values are often unknown or imprecisely known, requiring calibration via lab/in-situ test data. This study proposes a Bayesian updating framework that integrates probabilistic calibration of the soil model and probabilistic prediction of lateral spreading due to seismic liquefaction. In particular, the framework consists of three main parts: (1) Parametric study based on global sensitivity analysis, (2) Bayesian calibration of the primary input parameters of the constitutive model, and (3) Forward uncertainty propagation through a computational model simulating the response of a soil column under earthquake loading. For demonstration, the PM4Sand model is adopted, and cyclic strength data of Ottawa F-65 sand from cyclic direct simple shear tests are utilized to calibrate the model. The three main uncertainty analyses are performed using quoFEM, a SimCenter open-source software application for uncertainty quantification and optimization in the field of natural hazard engineering. The results demonstrate the potential of the framework linked with quoFEM to perform calibration and uncertainty propagation using sophisticated simulation models that can be part of a performance-based design workflow. 
    more » « less
  3. Li, Jinyan (Ed.)

    Artificial intelligence-powered protein structure prediction methods have led to a paradigm-shift in computational structural biology, yet contemporary approaches for predicting the interfacial residues (i.e., sites) of protein-protein interaction (PPI) still rely on experimental structures. Recent studies have demonstrated benefits of employing graph convolution for PPI site prediction, but ignore symmetries naturally occurring in 3-dimensional space and act only on experimental coordinates. Here we present EquiPPIS, an E(3) equivariant graph neural network approach for PPI site prediction. EquiPPIS employs symmetry-aware graph convolutions that transform equivariantly with translation, rotation, and reflection in 3D space, providing richer representations for molecular data compared to invariant convolutions. EquiPPIS substantially outperforms state-of-the-art approaches based on the same experimental input, and exhibits remarkable robustness by attaining better accuracy with predicted structural models from AlphaFold2 than what existing methods can achieve even with experimental structures. Freely available athttps://github.com/Bhattacharya-Lab/EquiPPIS, EquiPPIS enables accurate PPI site prediction at scale.

     
    more » « less
  4. The uncertainty quantification of prediction mod- els (e.g., neural networks) is crucial for their adoption in many robotics applications. This is arguably as important as making accurate predictions, especially for safety-critical applications such as self-driving cars. This paper proposes our approach to uncertainty quantification in the context of visual localization for autonomous driving, where we predict locations from images. Our proposed framework estimates probabilistic uncertainty by creating a sensor error model that maps an inter- nal output of the prediction model to the uncertainty. The sensor error model is created using multiple image databases of visual localization, each with ground-truth location. We demonstrate the accuracy of our uncertainty prediction framework using the Ithaca365 dataset, which includes variations in lighting, weather (sunny, snowy, night), and alignment errors between databases. We analyze both the predicted uncertainty and its incorporation into a Kalman-based localization filter. Our results show that prediction error variations increase with poor weather and lighting condition, leading to greater uncertainty and outliers, which can be predicted by our proposed uncertainty model. Additionally, our probabilistic error model enables the filter to remove ad hoc sensor gating, as the uncertainty automatically adjusts the model to the input data. 
    more » « less
  5. Active learning methods, like uncertainty sampling, combined with probabilistic prediction techniques have achieved success in various problems like image classification and text classification. For more complex multivariate prediction tasks, the relationships between labels play an important role in designing structured classifiers with better performance. However, computational time complexity limits prevalent probabilistic methods from effectively supporting active learning. Specifically, while non-probabilistic methods based on structured support vector ma-chines can be tractably applied to predicting cuts and bipartite matchings, conditional random fields are intractable for these structures. We propose an adversarial approach for active learning with structured prediction domains that is tractable for cuts and matching. We evaluate this approach algorithmically in two important structured prediction problems: multi-label classification and object tracking in videos. We demonstrate better accuracy and computational efficiency for our proposed method. 
    more » « less